Tian Liang


2024

pdf bib
Exploring Human-Like Translation Strategy with Large Language Models
Zhiwei He | Tian Liang | Wenxiang Jiao | Zhuosheng Zhang | Yujiu Yang | Rui Wang | Zhaopeng Tu | Shuming Shi | Xing Wang
Transactions of the Association for Computational Linguistics, Volume 12

Large language models (LLMs) have demonstrated impressive capabilities in general scenarios, exhibiting a level of aptitude that approaches, in some aspects even surpasses, human-level intelligence. Among their numerous skills, the translation abilities of LLMs have received considerable attention. Compared to typical machine translation that focuses solely on source-to-target mapping, LLM-based translation can potentially mimic the human translation process, which might take preparatory steps to ensure high-quality translation. This work explores this possibility by proposing the MAPS framework, which stands for Multi-Aspect Prompting and Selection. Specifically, we enable LLMs first to analyze the given source sentence and induce three aspects of translation-related knowledge (keywords, topics, and relevant demonstrations) to guide the final translation process. Moreover, we employ a selection mechanism based on quality estimation to filter out noisy and unhelpful knowledge. Both automatic (3 LLMs × 11 directions × 2 automatic metrics) and human evaluation (preference study and MQM) demonstrate the effectiveness of MAPS. Further analysis shows that by mimicking the human translation process, MAPS reduces various translation errors such as hallucination, ambiguity, mistranslation, awkward style, untranslated text, and omission. Source code is available at https://github.com/zwhe99/MAPS-mt.

2023

pdf bib
ParroT: Translating during Chat using Large Language Models tuned with Human Translation and Feedback
Wenxiang Jiao | Jen-tse Huang | Wenxuan Wang | Zhiwei He | Tian Liang | Xing Wang | Shuming Shi | Zhaopeng Tu
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) like ChatGPT have exhibited remarkable abilities on a wide range of natural language processing (NLP) tasks, including various machine translation abilities accomplished during chat. However, these models are only accessible through restricted APIs, which creates barriers to new research and advancements in the field. Therefore, we propose ParroT, a framework to enhance and regulate the translation abilities during chat based on open-source LLMs (e.g., LLaMA), human-written translation and feedback data. Specifically, ParroT reformulates translation data into the instruction-following style, and introduces a “Hint” field for incorporating extra requirements to regulate the translation process. Accordingly, we propose three instruction types for finetuning ParroT models, including translation instruction, contrastive instruction, and error-guided instruction. Experiments on Flores subsets and WMT22 test sets suggest that translation instruction improves the translation performance of vanilla LLMs significantly while error-guided instruction can lead to further improvement, which demonstrates the importance of learning from low-quality translations annotated by humans. We also demonstrate the potential of automatic evaluation tools in providing quality information of translations, when constructing error-guided instructions for directions that lack human annotation data. Please refer to our Github project for more implementation details: https://github.com/wxjiao/ParroT.