Bernhard Schoelkopf


2023

pdf bib
A Causal Framework to Quantify the Robustness of Mathematical Reasoning with Language Models
Alessandro Stolfo | Zhijing Jin | Kumar Shridhar | Bernhard Schoelkopf | Mrinmaya Sachan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We have recently witnessed a number of impressive results on hard mathematical reasoning problems with language models. At the same time, the robustness of these models has also been called into question; recent works have shown that models can rely on shallow patterns in the problem description when generating a solution. Building on the idea of behavioral testing, we propose a novel framework, which pins down the causal effect of various factors in the input, e.g., the surface form of the problem text, the operands, and math operators on the output solution. By grounding the behavioral analysis in a causal graph describing an intuitive reasoning process, we study the behavior of language models in terms of robustness and sensitivity to direct interventions in the input space. We apply our framework on a test bed of math word problems. Our analysis shows that robustness does not appear to continuously improve as a function of size, but the GPT-3 Davinci models (175B) achieve a dramatic improvement in both robustness and sensitivity compared to all other GPT variants.

pdf bib
Membership Inference Attacks against Language Models via Neighbourhood Comparison
Justus Mattern | Fatemehsadat Mireshghallah | Zhijing Jin | Bernhard Schoelkopf | Mrinmaya Sachan | Taylor Berg-Kirkpatrick
Findings of the Association for Computational Linguistics: ACL 2023

Membership Inference attacks (MIAs) aim to predict whether a data sample was present in the training data of a machine learning model or not, and are widely used for assessing the privacy risks of language models. Most existing attacks rely on the observation that models tend toassign higher probabilities to their training samples than non-training points. However, simple thresholding of the model score in isolation tends to lead to high false-positive rates as it does not account for the intrinsic complexity of a sample. Recent work has demonstrated that reference-based attacks which compare model scores to those obtained from a reference model trained on similar data can substantially improve the performance of MIAs.However, in order to train reference models, attacks of this kind make the strong and arguably unrealistic assumption that an adversary has access to samples closely resembling the original training data. Therefore, we investigate their performance in more realistic scenarios and find that they are highly fragile in relation to the data distribution used to train reference models. To investigate whether this fragility provides a layer of safety, we propose and evaluate neighbourhood attacks, which compare model scores for a given sample to scores of synthetically generated neighbour texts and therefore eliminate the need for access to the training data distribution. We show that, in addition to being competitive with reference-based attacks that have perfect knowledge about the training data distribution, our attack clearly outperforms existing reference-free attacks as well as reference-based attacks with imperfect knowledge, which demonstrates the need for a reevaluation of the threat model of adversarial attacks.

2022

pdf bib
Differentially Private Language Models for Secure Data Sharing
Justus Mattern | Zhijing Jin | Benjamin Weggenmann | Bernhard Schoelkopf | Mrinmaya Sachan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

To protect the privacy of individuals whose data is being shared, it is of high importance to develop methods allowing researchers and companies to release textual data while providing formal privacy guarantees to its originators. In the field of NLP, substantial efforts have been directed at building mechanisms following the framework of local differential privacy, thereby anonymizing individual text samples before releasing them. In practice, these approaches are often dissatisfying in terms of the quality of their output language due to the strong noise required for local differential privacy. In this paper, we approach the problem at hand using global differential privacy, particularly by training a generative language model in a differentially private manner and consequently sampling data from it. Using natural language prompts and a new prompt-mismatch loss, we are able to create highly accurate and fluent textual datasets taking on specific desired attributes such as sentiment or topic and resembling statistical properties of the training data. We perform thorough experiments indicating that our synthetic datasets do not leak information from our original data and are of high language quality and highly suitable for training models for further analysis on real-world data. Notably, we also demonstrate that training classifiers on private synthetic data outperforms directly training classifiers with DP-SGD.

pdf bib
Logical Fallacy Detection
Zhijing Jin | Abhinav Lalwani | Tejas Vaidhya | Xiaoyu Shen | Yiwen Ding | Zhiheng Lyu | Mrinmaya Sachan | Rada Mihalcea | Bernhard Schoelkopf
Findings of the Association for Computational Linguistics: EMNLP 2022

Reasoning is central to human intelligence. However, fallacious arguments are common, and some exacerbate problems such as spreading misinformation about climate change. In this paper, we propose the task of logical fallacy detection, and provide a new dataset (Logic) of logical fallacies generally found in text, together with an additional challenge set for detecting logical fallacies in climate change claims (LogicClimate). Detecting logical fallacies is a hard problem as the model must understand the underlying logical structure of the argument. We find that existing pretrained large language models perform poorly on this task. In contrast, we show that a simple structure-aware classifier outperforms the best language model by 5.46% F1 scores on Logic and 4.51% on LogicClimate. We encourage future work to explore this task since (a) it can serve as a new reasoning challenge for language models, and (b) it can have potential applications in tackling the spread of misinformation. Our dataset and code are available at https://github.com/causalNLP/logical-fallacy

2021

pdf bib
Mining the Cause of Political Decision-Making from Social Media: A Case Study of COVID-19 Policies across the US States
Zhijing Jin | Zeyu Peng | Tejas Vaidhya | Bernhard Schoelkopf | Rada Mihalcea
Findings of the Association for Computational Linguistics: EMNLP 2021

Mining the causes of political decision-making is an active research area in the field of political science. In the past, most studies have focused on long-term policies that are collected over several decades of time, and have primarily relied on surveys as the main source of predictors. However, the recent COVID-19 pandemic has given rise to a new political phenomenon, where political decision-making consists of frequent short-term decisions, all on the same controlled topic—the pandemic. In this paper, we focus on the question of how public opinion influences policy decisions, while controlling for confounders such as COVID-19 case increases or unemployment rates. Using a dataset consisting of Twitter data from the 50 US states, we classify the sentiments toward governors of each state, and conduct controlled studies and comparisons. Based on the compiled samples of sentiments, policies, and confounders, we conduct causal inference to discover trends in political decision-making across different states.

pdf bib
Causal Direction of Data Collection Matters: Implications of Causal and Anticausal Learning for NLP
Zhijing Jin | Julius von Kügelgen | Jingwei Ni | Tejas Vaidhya | Ayush Kaushal | Mrinmaya Sachan | Bernhard Schoelkopf
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The principle of independent causal mechanisms (ICM) states that generative processes of real world data consist of independent modules which do not influence or inform each other. While this idea has led to fruitful developments in the field of causal inference, it is not widely-known in the NLP community. In this work, we argue that the causal direction of the data collection process bears nontrivial implications that can explain a number of published NLP findings, such as differences in semi-supervised learning (SSL) and domain adaptation (DA) performance across different settings. We categorize common NLP tasks according to their causal direction and empirically assay the validity of the ICM principle for text data using minimum description length. We conduct an extensive meta-analysis of over 100 published SSL and 30 DA studies, and find that the results are consistent with our expectations based on causal insights. This work presents the first attempt to analyze the ICM principle in NLP, and provides constructive suggestions for future modeling choices.