Guangmin Zheng


2024

pdf bib
Enhancing Semantics in Multimodal Chain of Thought via Soft Negative Sampling
Guangmin Zheng | Jin Wang | Xiaobing Zhou | Xuejie Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Chain of thought (CoT) has proven useful for problems requiring complex reasoning. Many of these problems are both textual and multimodal. Given the inputs in different modalities, a model generates a rationale and then uses it to answer a question. Because of the hallucination issue, the generated soft negative rationales with high textual quality but illogical semantics do not always help improve answer accuracy. This study proposes a rationale generation method using soft negative sampling (SNSE-CoT) to mitigate hallucinations in multimodal CoT. Five methods were applied to generate soft negative samples that shared highly similar text but had different semantics from the original. Bidirectional margin loss (BML) was applied to introduce them into the traditional contrastive learning framework that involves only positive and negative samples. Extensive experiments on the ScienceQA dataset demonstrated the effectiveness of the proposed method. Code and data are released at https://github.com/zgMin/SNSE-CoT.

2022

pdf bib
YNU-HPCC at SemEval-2022 Task 6: Transformer-based Model for Intended Sarcasm Detection in English and Arabic
Guangmin Zheng | Jin Wang | Xuejie Zhang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

In this paper, we (a YNU-HPCC team) describe the system we built in the SemEval-2022 competition. As participants in Task 6 (titled “iSarcasmEval: Intended Sarcasm Detection In English and Arabic”), we implement the sentiment system for all three subtasks in English and Arabic. All subtasks involve the detection of sarcasm (binary and multilabel classification) and the determination of the sarcastic text location (sentence pair classification). Our system primarily applies the sequence classification model of a bidirectional encoder representation from a transformer (BERT). The BERT is used to extract sentence information from both directions for downstream classification tasks. A single basic model is used for single-sentence and sentence-pair binary classification tasks. For the multilabel task, the Label-Powerset method and binary cross-entropy loss function with weights are used. Our system exhibits competitive performance, obtaining 12/43 (21/32), 11/22, and 3/16 (8/13) rankings in the three official rankings for English (Arabic).