Ramon Ruiz-Dolz


2024

pdf bib
Learning Strategies for Robust Argument Mining: An Analysis of Variations in Language and Domain
Ramon Ruiz-Dolz | Chr-Jr Chiu | Chung-Chi Chen | Noriko Kando | Hsin-Hsi Chen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Argument mining has typically been researched for specific corpora belonging to concrete languages and domains independently in each research work. Human argumentation, however, has domain- and language-dependent linguistic features that determine the content and structure of arguments. Also, when deploying argument mining systems in the wild, we might not be able to control some of these features. Therefore, an important aspect that has not been thoroughly investigated in the argument mining literature is the robustness of such systems to variations in language and domain. In this paper, we present a complete analysis across three different languages and three different domains that allow us to have a better understanding on how to leverage the scarce available corpora to design argument mining systems that are more robust to natural language variations.

2023

pdf bib
Detecting Argumentative Fallacies in the Wild: Problems and Limitations of Large Language Models
Ramon Ruiz-Dolz | John Lawrence
Proceedings of the 10th Workshop on Argument Mining

Previous work on the automatic identification of fallacies in natural language text has typically approached the problem in constrained experimental setups that make it difficult to understand the applicability and usefulness of the proposals in the real world. In this paper, we present the first analysis of the limitations that these data-driven approaches could show in real situations. For that purpose, we first create a validation corpus consisting of natural language argumentation schemes. Second, we provide new empirical results to the emerging task of identifying fallacies in natural language text. Third, we analyse the errors observed outside of the testing data domains considering the new validation corpus. Finally, we point out some important limitations observed in our analysis that should be taken into account in future research in this topic. Specifically, if we want to deploy these systems in the Wild.

pdf bib
VivesDebate-Speech: A Corpus of Spoken Argumentation to Leverage Audio Features for Argument Mining
Ramon Ruiz-Dolz | Javier Iranzo-Sánchez
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In this paper, we describe VivesDebate-Speech, a corpus of spoken argumentation created to leverage audio features for argument mining tasks. The creation of this corpus represents an important contribution to the intersection of speech processing and argument mining communities, and one of the most complete publicly available resources in this topic. Moreover, we have performed a set of first-of-their-kind experiments which show an improvement when integrating audio features into the argument mining pipeline. The provided results can be used as a baseline for future research.

pdf bib
Automatic Debate Evaluation with Argumentation Semantics and Natural Language Argument Graph Networks
Ramon Ruiz-Dolz | Stella Heras | Ana Garcia
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The lack of annotated data on professional argumentation and complete argumentative debates has led to the oversimplification and the inability of approaching more complex natural language processing tasks. Such is the case of the automatic evaluation of complete professional argumentative debates. In this paper, we propose an original hybrid method to automatically predict the winning stance in this kind of debates. For that purpose, we combine concepts from argumentation theory such as argumentation frameworks and semantics, with Transformer-based architectures and neural graph networks. Furthermore, we obtain promising results that lay the basis on an unexplored new instance of the automatic analysis of natural language arguments.