Yujuan Fu


2024

pdf bib
Extracting Social Determinants of Health from Pediatric Patient Notes Using Large Language Models: Novel Corpus and Methods
Yujuan Fu | Giridhar Kaushik Ramachandran | Nicholas J. Dobbins | Namu Park | Michael Leu | Abby R. Rosenberg | Kevin Lybarger | Fei Xia | Özlem Uzuner | Meliha Yetisgen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Social determinants of health (SDoH) play a critical role in shaping health outcomes, particularly in pediatric populations where interventions can have long-term implications. SDoH are frequently studied in the Electronic Health Record (EHR), which provides a rich repository for diverse patient data. In this work, we present a novel annotated corpus, the Pediatric Social History Annotation Corpus (PedSHAC), and evaluate the automatic extraction of detailed SDoH representations using fine-tuned and in-context learning methods with Large Language Models (LLMs). PedSHAC comprises annotated social history sections from 1,260 clinical notes obtained from pediatric patients within the University of Washington (UW) hospital system. Employing an event-based annotation scheme, PedSHAC captures ten distinct health determinants to encompass living and economic stability, prior trauma, education access, substance use history, and mental health with an overall annotator agreement of 81.9 F1. Our proposed fine-tuning LLM-based extractors achieve high performance at 78.4 F1 for event arguments. In-context learning approaches with GPT-4 demonstrate promise for reliable SDoH extraction with limited annotated examples, with extraction performance at 82.3 F1 for event triggers.

pdf bib
To Err Is Human, How about Medical Large Language Models? Comparing Pre-trained Language Models for Medical Assessment Errors and Reliability
Wen-wai Yim | Yujuan Fu | Asma Ben Abacha | Meliha Yetisgen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Unpredictability, especially unpredictability with unknown error characteristics, is a highly undesirable trait, particularly in medical patient care applications. Although large pre-trained language models (LLM) have been applied to a variety of unseen tasks with highly competitive and successful results, their sensitivity to language inputs and resulting performance variability is not well-studied. In this work, we test state-of-the-art pre-trained language models from a variety of families to characterize their error generation and reliability in medical assessment ability. Particularly, we experiment with general medical assessment multiple choice tests, as well as their open-ended and true-false alternatives. We also profile model consistency, error agreements with each other and to humans; and finally, quantify their ability to recover and explain errors. The findings in this work can be used to give further information about medical models so that modelers can make better-informed decisions rather than relying on standalone performance metrics alone.

2023

pdf bib
Prompt-based Extraction of Social Determinants of Health Using Few-shot Learning
Giridhar Kaushik Ramachandran | Yujuan Fu | Bin Han | Kevin Lybarger | Nic Dobbins | Ozlem Uzuner | Meliha Yetisgen
Proceedings of the 5th Clinical Natural Language Processing Workshop

Social determinants of health (SDOH) documented in the electronic health record through unstructured text are increasingly being studied to understand how SDOH impacts patient health outcomes. In this work, we utilize the Social History Annotation Corpus (SHAC), a multi-institutional corpus of de-identified social history sections annotated for SDOH, including substance use, employment, and living status information. We explore the automatic extraction of SDOH information with SHAC in both standoff and inline annotation formats using GPT-4 in a one-shot prompting setting. We compare GPT-4 extraction performance with a high-performing supervised approach and perform thorough error analyses. Our prompt-based GPT-4 method achieved an overall 0.652 F1 on the SHAC test set, similar to the 7th best-performing system among all teams in the n2c2 challenge with SHAC.