
JFY-IV MACHINE TRANSLATION SYSTEM

LIU Zhuo FU Aiping LI Wei

Institute of Linguistics
Chinese Academy of Social Sciences
5, Jianguomennei St., Beijing, P.R. China

1. History of Development of JFY-systems

JFY MT systems refer to the four systems named JFY-I, JFY-II, JFY-III and
JFY-IV, which we began to develop as early as 13 years ago. JFY-I (1976-
1978), which is only to translate titles, JFY-II (1978-1980) and JFY-III
(1980-1982) are all experimental systems, aiming at exploring, both
technically and theoretically, the ways and means for MT system
development. But JFY-IV (1982-), now under active development, is market-
oriented. Since 1982, it has experienced three major changes in its system
design, and we got its final shape of overall design in 1987. Up to now, it
has experimentally translated hundreds of various sample sentences during
the 2-year system debugging and function inspecting, and it is proved that
the theoretical basis of linguistics and the algorithm design techniques
are sound and highly effective.

2. Characteristics of JFY-IV MT-system

2.1 Flow Chart for JFY-IV

SL Input TL Output

Grammar Language Processor Dictionary
Rule Base Rule Base

Background Semantic base

The analysis and transfer work is accomplished through one-time bottom-up
data-driven scanning from right to left, realized by bidirectional pattern
matching; and the target sentence generation is also achieved by a right-
left scanning of processing.

2.2 One-dictionary Strategy

There is designed in JFY-IV only one dictionary called SL-TL Usage Contrast
Dictionary, in which rules are combined with lexical items, and word
meanings and parameters are involved in the respective rules. The

88

dictionary of this type will help concretize universal rules and meanwhile
abstract individual rules, and it will also help, during the process,
extract word parameters dynamically.

At present, most MT systems seem to focus their attention on the
establishment of linear abstract rule system for language analysis based on
sort of meta language so as to satisfy the requirements of a regular
analytical processing. They are, therefore, likely to overlook the
experiential elements in language rules, i.e. the individual phenomena
resulted either by language customs or by contrast differences between
languages. This will of course heavily affect the translation quality. The
ideal solution to this problem lies in that the abstractness of lexical
rules be limited as far as possible on condition that grammar rules keep on
their high generality. To achieve the goal, rule hierarchy should be used
instead of linear rule table. For example, transitive VP rules can at least
be classified as in the following 4 levels: (1) READ + BOOK; (2) READ + N
(written material); (3) V + N (written material); (4) V + N. The
difference in between lies not only in abstractness but also in the way to
establish the rules. Rule level (1) is a concrete model structure, which
serves as a starting point and basis for the other rules. Rule level (2) is
directly related to a lexical item and, furthermore, to its certain
meaning. Both (1) and (2) are dictionary rules. The level (3) and (4)
rules, however, are independent of concrete words, and therefore should be
included in Grammar Rule Base. Dictionary rules are also called model
rules, and grammar rules called operational rules. It will bring about two
advantages to establish language rules in a hierarchy of model rules up to
operational rules. First, it will be possible to design the language
processing algorithm as a gradual embodying process of information
conversion. Second, it provides the possibility to combine rules with
lexical items and their meanings without laying too heavy a burden on
dictionary as quite some MT experts have worried about. And this idea of
hierarchy is considered in JFY-IV as a guideline and principle for the
establishment of both syntactic rules and semantic rules. In this way the
precision of rules is not only guaranteed but selfprovable as well. To put
it in further details, the combination of rules with words and their
meanings will benefit in many ways:

(1) As a starting point and a necessary element in a model rule, the
processed word implicitly introduces semantics into formal analysis, for,
during its analysis, it is unnecessary to use its semantic parameters,
which are only to be possibly used in the processing of other words.

(2) To lay rules onto words is the most effective way to guarantee
the correctness and exactness of rules and to raise the search precision.

(3) The usages of each word are relatively limited. To enumerate all the
model rules of a word seems no impossible even in the inductive method.
Meanwhile, for each type of operational rules, one might deduce out
inclusively the possible number of rules upon the permutation of the
necessary rule elements, e.g. the permutation for AB is 2, for ABC, 6. The
whole set of rules in a language can therefore be acquired by deleting the
impossible permutations and by adding rules of the same permutation but
with different content. This way, the set of operational rules of each
kind, just as the set of model rules for each word, is itself a closed
definite subset of the language rule base, which is well independent of,

89

i.e. not crossed with, other subsets. Such independence of rule subsets
proves extraordinarily advantageous for the gradual establishment of the
final rule base, and furthermore helps avoid much trouble and many mistakes
caused by the crossing of rules, as shown in the previous MT systems.

(4) In the conventional MT systems, the various static parameters for each
word are set up out of two requirements, one for the processing of itself,
the other for the processing of other words. But in JFY-IV, thanks to the
combination of rules with words, the first need is no longer necessary, for
the word itself, being an indispensable element in its rule, is naturally a
more concrete condition than its any parameters. Thus, one might only set
up those parameters to meet the second requirement, which provides a
possibility to change parameters dynamically according to the yes/no of the
execution of a rule. It seems even more reasonable for a system to be
able to dynamically change such codes as semantic parameters, which are
varied as the word meaning is varied.

2.3 Background Semantic Base

Background semantic base is designed on two principles: distributive
features and thesaurus-like hierarchy. Its establishment helps harmonize
the relation between syntactic analysis and semantic analysis. Such a
rule base proves convenient in two ways.

(1) In pattern matching, the involvement of the background semantic base in
the condition search is in reality an extension of the model rule. During
the search for the semantic condition required by the model rule, the
matching will be counted as successful if either a semantic parameter of
the searched word or one in the corresponding semantic chain in the base
meets the requirement. Trouble is saved when you otherwise will have to be
worried about how many bytes in the data structure are suitable and enough
for lexical semantic parameters and about unnecessary repetition or
frequent change of semantic parameters under lexical entries in the
dictionary.

(2) It is very easy to set up and maintain such a hierarchy base because,
once the principles are established, the rules can well be added to, or
revised in, the base one by one. The number of the rules in the base does
not affect the normal functioning of pattern matching, nor does even a null
base.

2.4 Transformational Mechanism

The introduction of transformational mechanism helps to properly solve the
problems concerning the intricate relation between individuality and
generality inherent in a language.

We deem it extremely important for an efficient MT system to cleverly
manage the relation between individuality and generality. There exist
various manifestations for the relation, and therefore there should be
different kinds of means. Our rule hierarchy strategy, which is realized
with the help of the techniques like recursive call, function call and
subset call applied in the establishment and execution of linguistic rules,
is a very powerful and effective way to achieve the goal. The exploitation
of the background semantic base is another remedy. In order to correctly

90

and reasonably deal with the relation of individuality and generality in
linguistic pattern recognition, transformational mechanism is introduced in
pattern analysis of the source language. Linguistic patterns are classified
in two types: basic form and transform, respectively representing the
individual aspect and general aspect for patterns. And it is stipulated
that basic form is not computable, and therefore should be changed into
transforms before it can be executed.

2.5 Support of Language JFY

The software we have used in developing our JFY-IV system is Language JFY,
a highly flexible problem-oriented functional production language, defined
and designed by ourselves on the basis of COBOL.

Language JFY is defined as of production because production is most
suitable for pattern recognition; and its structure designed as functional
just in order to achieve a modular system for rules. Language JFY, oriented
to natural language processing, is not only of the similar characteristics
to ordinary high-level computer languages, but enjoys its own particular
functions to meet the needs in language processing: (1) Powerful
transformation functions to realize such transformations as omission (ABC
—>AB), substitution (ABC—>ADC), order change (ABC—>BAC), extension
(ABC—>ABDC) and complex transformation (ABC—>BDAC); (2) Various flexible
address search and word locating functions; (3) Easy and practical
functions for leaping and backtracking processing; (4) Controllable go-to
function; (5) Recursive function; (6) Functions for the let-pass, sieving
and covering of language units according to linguistic rules; (7) Copy
function for words and their related information; (8) Various perfect trace
functions.

It must be emphasized that a perfect trace function is an indispensable
tool in debugging for a practical MT system. Language JFY can automatically
fulfill the following trace functions: (1) Overall trace: to trace the
whole process of the execution of rules; (2) Word trace: to trace the
process of working a certain word in the processed sentence; (3) Rule type
trace: to trace the execution of a certain type of operational rules
related to a certain word; (4) Conclusion trace: only to trace the process
of those rules whose conditions are satisfied, i.e. the successful rules.
The above four kinds of trace can be realized in two modes: foreground
trace and fore-back-ground trace. The former simply traces the process of
rules execution while the latter also traces the dynamical changes of all
the parameters and variables concerned. Such a flexible trace function
benefits us greatly in our debugging of the software, the test of all types
of the rules and the whole experiment in general.

2.6 Simple and Easy-to-learn Interface for the User

A practical MT system should provide for the user the easy possibility to
revise and expand the dictionary so as to gradually raise its translating
ability and to suit the needs for the change and expansion of the
vocabulary. Such a possibility, of course, only involves open words such as
nouns, verbs and adjectives, as for function words, which are quite
limited, they can only be dealt with by MT experts. There are two
prerequisites for the realization of this possibility. First, the user
doesn't need to know the specialized techniques for machine translation,

91

though a rough knowledge of the basic principles and process of machine
translation should be necessary, which can be easily achieved by a week's
training. Second, the system should have the mechanism to relieve the user
of the disturbance of various parameters and variables. As our rules are
organized in a system of hierarchy, so our lexical rules in the dictionary
can be compiled very close to the way man compiles a usage dictionary. The
rules in JFY-IV machine dictionary are in fact very similar in form to the
descriptions for the usages of each word in some more recently published
dictionaries, e.g. A Dictionary of English Collocations (by Suzhou
University, 1988, Nanjing). Therefore, common language workers can well
undertake the task of compiling the main part of the dictionary.

2.7 Compatibility for the Algorithm and Grammar Rule Base

JFY-IV translating system is designed to finally achieve the automatic
translation from the main Indo-European languages such as English, French,
German and Russian into Chinese, with the goal at present of the practical
development from English to Chinese. After the completion of English
Chinese part, if we go on to develop, say, a German Chinese system for JFY-
IV, the main work will be the compilation of dictionary, and it on
principle needs no great change, only with a few necessary complement and
revision, for the already well established algorithm, i.e. the language
processor, and the background semantic base and the grammar rule base.

3. Software Design for JFY-IV System

JFY-IV software involves three main parts: a working field, rule banks, and
a language processor, which is the kernel.

The working field is a two dimensional data table in the computer memory
set by the language processor. It is used to store the processed sentence
and its related data. Before translation begins, the field is almost null
only with the word string on the left side of the table. The data in the
field are in constant change during the recursive calls in execution in
such processes as dictionary looking-up, pattern matching, inferring,
decision making, and knowledge acquiring, before finally are produced in
the field all the parameters needed in the generation of a correct readable
target sentence.

Except the background semantic base, the rule banks are where production
rules are stored. Each rule, whether general or individual, is composed of
condition and conclusion. Individual rules are initiated into operation
through successful search for the related word by the language processor.
General rules, on the other hand, can either be initiated in the search for
words or by means of function call, with the rule type as the function name
to be called, in the midst of another rule's execution.

Language processor is divided into two parts: arithmetic unit and control
unit. The arithmetic unit executes such operations as pattern recognition
and matching, inferring, etc. The control unit accomplishes process
control, matching control, action control and trace control.

There have now been quite a number of pattern matching systems based on a
production language. Compared with other production systems, our software

92

system has its own distinguishing features.

(1) The order between productions means little. Each production or group of
productions stands independently of another production or group, creating a
very favourable environment in which to expand, delete, revise and maintain
the production rules.

(2) Although the operation of the system is mainly data-driven, however,
the data-driven working mode can also be dynamically changed into the
objective-driven one because in the working field are also stored by the
system, besides various attribute parameters for the related words, some
function parameters reflecting the designer's language analysis strategy.

(3) There is designed in our system a bidirectional inferring mechanism.
Pattern matching therefore can be realized either in the direction from
right to left or from left to right.

(4) Both condition and conclusion in a production can be complex. They can
be made of a number of items; the content of each item can further be
either single or complex. What is more, the content may also be a function
call which helps greatly in dealing with the relation between individuality
and generality of language rules. One can make a complex item whose
internal relation is logical OR, AND or NOT. As the writing of a production
is so flexible and varied, a complicated linguistic rule or a number of
related rules might be expressed in the form of a single production in a
concise and straightforward way. A man even without software training will
have no much difficulty reading such production rules.

(5) In a production, condition is naturally not to be confused with
conclusion. But in our system there is a mechanism which can help realize
some conclusion in the midst of condition search or achieve some further
condition search in the process of conclusion execution. Thanks to this
know-how, a single production can in content be equal to a group of
productions, and, still more significantly, generality can thus be more
easily separated from individuality.

(6) The control unit in our language processor not simply controls a group
of switches, but also embodies the linguistic design idea for the system.In
this sense, the control unit is rightly compared to the nerve center for
JFY-IV.

4. Experiment and Results in Executing JFY-IV

Since June 1978, we have undertaken four kinds of experiments to test and
debug our system: (1) Software debugging: to debug logical errors in our
language processor; (2) Functional test: to test function after function,
problem after problem, in order to perfect every important rule module; (3)
Overall test: to test the whole process of translation and all the
interfaces on a corpus of sentences in which some are selected in
succession from a technical text, some are typical sentences for different
patterns or of other linguistic value, and still some with more or less
extragramaticality to help test the robustness of the system; (4) Test for
compatibility: to establish an experimental MT model from Esperanto to
Chinese based on the existing JFY-IV English-Chinese system.

93

