
NEW DIRECTIONS IN MT SYSTEMS: A CHANGE IN PARADIGM.

Margaret KING
ISSCO and ETI, University of Geneva

Geneva
Switzerland

There are essentially two aspects to a machine translation system; the linguistics which provides
the intellectual basis for the treatment of the languages concerned and of the relation between
them, and the software which puts computational constraints on the expression of the linguistic
treatment. In this contribution I want to concentrate on the latter, although clearly in practice
the two cannot be so sharply distinguished, if only because of their strong mutual influence.

In the very early machine translation systems, indeed, it was quite impossible to separate out
these two aspects. Instructions on how to get from the source language to a translation were
directly programmed in some low-level programming language, producing huge amounts of code
that was impossible to decipher and dangerous to modify. A limit on improveability of the
system is reached when attempts to correct one mistake succeed, but lead to new mistakes where
before the system's behaviour was correct.

It was this problem which led to a first major shift in computational paradigm. System
designers, becoming aware of the complexity of the linguistic descriptions necessary to achieve
adequate translations, began to produce high-level languages specially designed as a medium for
the expression of linguistic facts. It became much easier to structure a linguistic description
well, so that, in turn, both understanding the description and modifying it became easier. (It is
of course no accident that this development was taking place soon after computer scientists had
also discovered the utility of high level languages and soon after the first impact of formal
syntax had begun to be felt).

There is no doubt that this first shift in paradigm was of major importance, and contributed
greatly to the successful development of systems like Taum-Meteo, the family of Grenoble
systems, the first Mu project in Japan and several others. Nonetheless, linguists working on the
linguistic descriptions discovered that the conception of the high-level languages forced upon
them a problem of procedurality. Naturally enough, given the time at which the languages were
being defined, most took tree-structures and their manipulation as the most natural way for a
linguist to express himself. Thus, in effect, the linguist found himself describing a series of
tree-to-tree transformations aimed at producing a canonical structure of some sort, (most often
a dependency grammar representation of the input). Throwing all the rules describing the
transformations into one big pot and allowing them to interact freely not only leads to programs

78



which cannot be guaranteed to terminate but can also lead to wrong results: if a canonical
structure is aimed at and it has to be achieved by successive transformations of a tree structure,
some transformations have to be ordered in order to produce the correct results. (And once
again, it is no accident that transformational grammarians were discovering the same problem at
the same time).

Initially, several attempts were made to solve or at least reduce the problems by methods which
might be described as patching: leaving the fundamental design the same, but sticking some
extra control mechanism over the top or imposing a constraint to guarantee termination. More
recently, a radical change in the way of thinking about how to describe a language can be
discerned, which may well, I believe, constitute a new fundamental shift in paradigm.

The radical change is to insist on declarativity and monotonicity as being of fundamental
importance. A linguist who is provided with a declarative language in which to express himself
no longer has to worry about the order in which operations will be carried out. The easiest way
to think of it is to think of the system gradually accumulating more and more constraints on
what a correct solution would be and producing the solution only when all the constraints are
known rather than working step by step towards a solution, producing at each step one or more
incomplete solutions some of which may turn out to be wrong and have to be abandoned. The
basic idea is, of course, not confined to the world of machine translation. It is the basis also of
logic programming languages and familiar too from recent work in generative linguistics, as well
as having an obvious connection with the old declarative/procedural debate in artificial
intelligence. The main benefit of using a monotonic system is obvious: a linguistic description
can be constructed incrementally, is faster to construct, easier to understand and easier to
maintain. The relative speed with which a description can be produced also allows the linguist
increased freedom to experiment with different solutions to the real problems of translation.

So far as I know, work on declarative systems in machine translation is currently limited to
research groups. (They can usually be spotted by their use of unification based formalisms or of
logic programming languages). Although no-one would want to claim that any ultimate solution
has been found - especially since there are so many fundamental problems to whose solution
any shift in computational paradigm is simply irrelevant - experience so far does seem to
justify optimism about the benefits to be gained from this new direction.

79


