Abstract
There are currently two philosophies for building grammars and parsers – Statistically induced grammars and Wide-coverage grammars. One way to combine the strengths of both approaches is to have a wide-coverage grammar with a heuristic component which is domain independent but whose contribution is tuned to particular domains. In this paper, we discuss a three-stage approach to disambiguation in the context of a lexicalized grammar, using a variety of domain independent heuristic techniques. We present a training algorithm which uses hand-bracketed treebank parses to set the weights of these heuristics. We compare the performance of our grammar against the performance of the IBM statistical grammar, using both untrained and trained weights for the heuristics.- Anthology ID:
- 1995.iwpt-1.27
- Volume:
- Proceedings of the Fourth International Workshop on Parsing Technologies
- Month:
- September 20-24
- Year:
- 1995
- Address:
- Prague and Karlovy Vary, Czech Republic
- Editors:
- Eva Hajicova, Bernard Lang, Robert Berwick, Harry Bunt, Bob Carpenter, Ken Church, Aravind Joshi, Ronald Kaplan, Martin Kay, Makoto Nagao, Anton Nijholt, Mark Steedman, Henry Thompson, Masaru Tomita, K. Vijay-Shanker, Yorick Wilks, Kent Wittenburg
- Venues:
- IWPT | WS
- SIG:
- SIGPARSE
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 224–233
- Language:
- URL:
- https://aclanthology.org/1995.iwpt-1.27
- DOI:
- Bibkey:
- Cite (ACL):
- B. Srinivas, Christine Doran, and Seth Kulick. 1995. Heuristics and Parse Ranking. In Proceedings of the Fourth International Workshop on Parsing Technologies, pages 224–233, Prague and Karlovy Vary, Czech Republic. Association for Computational Linguistics.
- Cite (Informal):
- Heuristics and Parse Ranking (Srinivas et al., IWPT-WS 1995)
- Copy Citation:
- PDF:
- https://aclanthology.org/1995.iwpt-1.27.pdf
Export citation
@inproceedings{srinivas-etal-1995-heuristics, title = "Heuristics and Parse Ranking", author = "Srinivas, B. and Doran, Christine and Kulick, Seth", editor = "Hajicova, Eva and Lang, Bernard and Berwick, Robert and Bunt, Harry and Carpenter, Bob and Church, Ken and Joshi, Aravind and Kaplan, Ronald and Kay, Martin and Nagao, Makoto and Nijholt, Anton and Steedman, Mark and Thompson, Henry and Tomita, Masaru and Vijay-Shanker, K. and Wilks, Yorick and Wittenburg, Kent", booktitle = "Proceedings of the Fourth International Workshop on Parsing Technologies", month = sep # " 20-24", year = "1995", address = "Prague and Karlovy Vary, Czech Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/1995.iwpt-1.27", pages = "224--233", abstract = "There are currently two philosophies for building grammars and parsers {--} Statistically induced grammars and Wide-coverage grammars. One way to combine the strengths of both approaches is to have a wide-coverage grammar with a heuristic component which is domain independent but whose contribution is tuned to particular domains. In this paper, we discuss a three-stage approach to disambiguation in the context of a lexicalized grammar, using a variety of domain independent heuristic techniques. We present a training algorithm which uses hand-bracketed treebank parses to set the weights of these heuristics. We compare the performance of our grammar against the performance of the IBM statistical grammar, using both untrained and trained weights for the heuristics.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="srinivas-etal-1995-heuristics"> <titleInfo> <title>Heuristics and Parse Ranking</title> </titleInfo> <name type="personal"> <namePart type="given">B</namePart> <namePart type="family">Srinivas</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christine</namePart> <namePart type="family">Doran</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seth</namePart> <namePart type="family">Kulick</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>1995-sep 20-24</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Fourth International Workshop on Parsing Technologies</title> </titleInfo> <name type="personal"> <namePart type="given">Eva</namePart> <namePart type="family">Hajicova</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bernard</namePart> <namePart type="family">Lang</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Robert</namePart> <namePart type="family">Berwick</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Harry</namePart> <namePart type="family">Bunt</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bob</namePart> <namePart type="family">Carpenter</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ken</namePart> <namePart type="family">Church</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aravind</namePart> <namePart type="family">Joshi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ronald</namePart> <namePart type="family">Kaplan</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Kay</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Nagao</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Anton</namePart> <namePart type="family">Nijholt</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Steedman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Henry</namePart> <namePart type="family">Thompson</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaru</namePart> <namePart type="family">Tomita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">K</namePart> <namePart type="family">Vijay-Shanker</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yorick</namePart> <namePart type="family">Wilks</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kent</namePart> <namePart type="family">Wittenburg</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Prague and Karlovy Vary, Czech Republic</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>There are currently two philosophies for building grammars and parsers – Statistically induced grammars and Wide-coverage grammars. One way to combine the strengths of both approaches is to have a wide-coverage grammar with a heuristic component which is domain independent but whose contribution is tuned to particular domains. In this paper, we discuss a three-stage approach to disambiguation in the context of a lexicalized grammar, using a variety of domain independent heuristic techniques. We present a training algorithm which uses hand-bracketed treebank parses to set the weights of these heuristics. We compare the performance of our grammar against the performance of the IBM statistical grammar, using both untrained and trained weights for the heuristics.</abstract> <identifier type="citekey">srinivas-etal-1995-heuristics</identifier> <location> <url>https://aclanthology.org/1995.iwpt-1.27</url> </location> <part> <date>1995-sep 20-24</date> <extent unit="page"> <start>224</start> <end>233</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Heuristics and Parse Ranking %A Srinivas, B. %A Doran, Christine %A Kulick, Seth %Y Hajicova, Eva %Y Lang, Bernard %Y Berwick, Robert %Y Bunt, Harry %Y Carpenter, Bob %Y Church, Ken %Y Joshi, Aravind %Y Kaplan, Ronald %Y Kay, Martin %Y Nagao, Makoto %Y Nijholt, Anton %Y Steedman, Mark %Y Thompson, Henry %Y Tomita, Masaru %Y Vijay-Shanker, K. %Y Wilks, Yorick %Y Wittenburg, Kent %S Proceedings of the Fourth International Workshop on Parsing Technologies %D 1995 %8 sep 20 24 %I Association for Computational Linguistics %C Prague and Karlovy Vary, Czech Republic %F srinivas-etal-1995-heuristics %X There are currently two philosophies for building grammars and parsers – Statistically induced grammars and Wide-coverage grammars. One way to combine the strengths of both approaches is to have a wide-coverage grammar with a heuristic component which is domain independent but whose contribution is tuned to particular domains. In this paper, we discuss a three-stage approach to disambiguation in the context of a lexicalized grammar, using a variety of domain independent heuristic techniques. We present a training algorithm which uses hand-bracketed treebank parses to set the weights of these heuristics. We compare the performance of our grammar against the performance of the IBM statistical grammar, using both untrained and trained weights for the heuristics. %U https://aclanthology.org/1995.iwpt-1.27 %P 224-233
Markdown (Informal)
[Heuristics and Parse Ranking](https://aclanthology.org/1995.iwpt-1.27) (Srinivas et al., IWPT-WS 1995)
- Heuristics and Parse Ranking (Srinivas et al., IWPT-WS 1995)
ACL
- B. Srinivas, Christine Doran, and Seth Kulick. 1995. Heuristics and Parse Ranking. In Proceedings of the Fourth International Workshop on Parsing Technologies, pages 224–233, Prague and Karlovy Vary, Czech Republic. Association for Computational Linguistics.