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Abstract
We present an automated, system-internal evaluation technique for linguistic representations in a large-scale, multilingual MT system.
We use machine-learned classifiers to recognize the differences between linguistic representations generated from transfer in an MT
context from representations that are produced by "native" analysis of the target language. In the MT scenario, convergence of the two
is the desired result. Holding the feature set and the learning algorithm constant, the accuracy of the classifiers provides a measure of
the overall difference between the two sets of linguistic representations: classifiers with higher accuracy correspond to more
pronounced differences between representations. More importantly, the classifiers yield the basis for error-analysis by providing a
ranking of the importance of linguistic features. The more salient a linguistic criterion is in discriminating transferred representations
from "native" representations, the more work will be needed in order to get closer to the goal of producing native-like MT. We present
results from using this approach on the Microsoft MT system and discuss its advantages and possible extensions.
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1. Introduction
The evaluation of MT systems falls into two broad
categories: cross-system evaluation, and system-internal
evaluation. Cross-system evaluations tend to be performed
infrequently, and require system-independent evaluation
metrics. System-internal evaluation, on the other hand, is
customized for a particular MT architecture and needs to
be performed on a regular basis, in order to provide
feedback to system developers and linguists. Given the
high cost in time and money that is associated with human
evaluation, automating the evaluation process is crucial in
system-internal evaluation (for related efforts, see also
Corston-Oliver et al. (2001), Ringger et al. (2001),
Bangalore et al (2000), Alshawi et al. (1998) and Su et al.
(1992)). Ideally, an automated evaluation procedure
should provide two kinds of information: raw numbers
that can be used for quantitative analysis over time, and
information that helps in qualitative error analysis.
In this paper, we propose an automated system-internal
evaluation procedure for transferred semantic
representations that fits these desiderata. We present
results from using this evaluation procedure on the
multilingual Microsoft MT system, and show how this
approach can be used for error analysis.
In an MT system that transfers linguistic representations
from a source language to a target language, it is
important to ensure that the transferred linguistic
representations are as similar as possible to the
representations of the target language. In the Microsoft
Natural Language Processing System (Heidorn 2000) we
use logical form representations (LFs) in semantic
transfer. These representations are graphs, representing
the predicate argument structure and major semantic
relations within a sentence. The nodes in the graph are
identified by the lemma of a content word. The edges are
directed, labelled arcs, indicating the semantic

relationship between nodes. An example of an LF graph is
given in Figure 1. Note that each node in the graph also
carries attributes and features that are not shown in Figure
1.

Figure 1: Logical form representation

The logical form representations should be as language-
neutral as possible, but some typological differences
between languages leave their mark. For example, the
lack of overt markers for definiteness in Japanese leads to
underspecification of definiteness features in Japanese
logical forms and hence in logical forms transferred from
Japanese into English. Another example involves the lack
of complete resolution of all syntactic relations into
semantic primitives, where that kind of analysis proves
extremely hard: a German "NP + genitive NP"
construction like "die Anordnung der Tabelle" is analyzed
at logical form in terms of a Possessor relation, whereas
the English counterpart "the position of the table" is
currently analyzed as an unspecified prepositional
relation.
In our MT architecture, alignments between logical form
subgraphs of source and target language are identified in a
training phase using aligned corpora (Menezes &
Richardson 2001). These aligned subgraphs are stored in
an example base. During the translation process, a
sentence in the source language is analyzed and its logical



form is mapped against the example base of logical form
mappings into the target language. From the subgraphs
retrieved from the example base, a target logical form is
constructed which serves as input into a generation
component to produce a target string.
For our evaluation experiment, we automatically construct
classifiers that distinguish two sets of logical forms. In
one scenario, we compare logical forms from two
different languages to assess the extent to which the LFs
converge on similar representations. In the second
scenario, we compare transferred logical forms to native
logical forms in the target language to assess the
contribution of the transfer component. An automated
evaluation method is particularly important given that the
specifics of the LF representations are continually
evolving.
The classification accuracy gives an indication of how
different or distant two LFs are. By inspecting the
classifiers we can learn where improvements can be made.
The machine learning approach that we use in this paper
is a decision tree model. The reason for this choice is
purely a pragmatic one: decision trees are easy to
construct and easy to inspect. Nothing in our
methodology, however, hinges on this particular choice.

2. Data
Our data consist of five aligned sets of 10,000 sentences
from published computer software manuals and online
help documents in five languages (English, French,
German, Japanese, and Spanish). For the purpose of our
evaluation experiments, we split the data 70/30 for
training of the classifiers versus testing against held out
data.
From these five sets of raw sentence data, we extracted
features in the following way: First, we ran each set of
sentences through the linguistic analysis component of our
system, extracting linguistic features for "native" logical
form representations. We then processed each of the
datasets in our MT system, producing sets of features of
the transferred logical forms. These two sets of extracted
features are used in two comparison schemes: the native-
to-native comparison scheme and the transferred-to-target
scheme.

3. Features
The features used for these comparison schemes fall into
two broad categories:

(a) Features that characterize various aspects of the LF
graph. The 22 features in this category include:

• Boolean-valued features: e.g. NonModalinModals
(indicating the presence of an item in the Modals
attribute that is not lexically marked as a modal or
auxiliary), EmptyVP (existence of verbal nodes with
an empty subject and with no other semantic
dependents)

• Integer-valued features: e.g. Xpredcounter (number
of zero subjects), Nodecounter (number of nodes in
the LF)

• Floating point-valued features: e.g. BitsperNoun
(average number of features per nominal node),
Attributesperverb (average number of semantic
relations per verbal node), Connectivity (number
of arcs divided by number of nodes).

(b) Features that capture the fit between the part of
speech (POS) and the semantic relations (semrels).
We currently use a simple combination of 9 POSs
and 38 semrel features: for example, the LF in Figure
1 can be characterized by the POS_semrel co-
occurrence features such as Verb_Tsub, Verb_Tobj,
Verb_Purp, Noun_Mod, and semrel_POS co-
occurrence features such as Tsub_Pron, Tobj_Noun,
Mod_Noun, and Purp_Verb. Unusual pairings of
POS and semrels are often indicative of ill-formed
logical forms. There are currently 138 POS_semrel
and 161 semrel_POS features.

These features are extracted automatically by traversing
the native and transferred LF graphs. As the system
develops, a different set of features might become more
informative in discriminating two sets of LF
representations. A machine-learning approach is therefore
particularly advantageous, as the discovery of
distinguishing features can be done automatically once a
candidate set of features is given to the learner. Not all
features are selected for all models by the decision tree
learning tools.

4. The Decision Tree Models
We used a set of automated tools to construct decision
trees (Chickering et al. 1997) based on the features
extracted from logical forms. To avoid overfitting, we
specified that nodes in the decision tree should not be split
if they accounted for fewer than fifty cases. For each set
of data we built decision trees at varying levels of
granularity (by manipulating the prior probability of tree
structures to favor simpler structures) and selected the tree
with maximal accuracy. Since all datasets contain equal
numbers of logical forms from each of the two categories
being compared, the baseline accuracy for comparison is
50%.

4.1 Constructing the Models
We built a total of 16 different models for the following
22 logical form comparisons:

Ten models to compare native logical forms:
German versus English
Spanish versus English
French versus English
Japanese versus English
German versus Spanish
German versus French
German versus Japanese
Spanish versus French
Spanish versus Japanese
French versus Japanese

Six models to compare transferred logical forms to target
logical forms:

(Japanese → English) versus English
(French → English) versus English
(German → English) versus English
(Spanish → English) versus English
(English → Japanese) versus Japanese
(English → Spanish) versus Spanish



The comparison between native logical forms is useful in
two respects. First, it provides a baseline against which to
compare the transferred logical forms. If the accuracy of
the classifier distinguishing native LFs of language A and
language B is 80%, and the accuracy of the classifier
distinguishing LFs transferred from A to B to native LFs
in B is only 70%, the difference of 10% accuracy can be
interpreted as a gain achieved by transfer from A to B.
Secondly, the comparison between native LFs helps
identify areas where the logical form analysis components
can be improved, i.e. can be brought closer to the goal of
maximally language-independent representations (modulo
typological differences).
Comparing transferred LFs to target LFs shows directly
how closely the transferred LFs converge on native-like
qualities. In the ideal case, the accuracy should equal the
baseline of 50%, meaning that the transferred LFs are
indistinguishable from native LFs. Features of high
salience in the classifier indicate potential areas for
improvement in alignment and transfer.

4.2 Evaluating the Decision Trees
The accuracy numbers achieved by the classifiers can be

interpreted as a measure of the distance between LFs.
Somewhat paradoxically, dissimilar sets of logical forms
yield high classification accuracy while similar sets of
logical forms yield low classification accuracy, i.e. as the
LF representations converge, it becomes increasingly
difficult for the classifier to distinguish them.
To facilitate interpretation of the data, we have converted
accuracy percentages into a more intuitive distance
measure using the following formula:

distance = 2∗ (accuracy−50)
Minimal accuracy of 50% (baseline) translates into 0
distance, maximal accuracy of 100% translates into a
distance of 100.

Comparison of Native LFs
Figure 2 shows the results of our native-native
comparison scheme. The representations for English and
German are most similar (distance=50.30), while Japanese
differs substantially from all other languages. Note that
this should not be interpreted as a measure of typological
differences among languages. Rather it reflects a
combination of typological differences and the current
implementation of our system.

Figure 2: Comparing native logical forms

In order to disentangle these two influences we
successively removed the top ranked feature and retrained
the classifier. Figure 3 shows the effect of the removal of
the ten most salient features that distinguish English and
Japanese. We see that the measured distance between the
two languages decreases sharply when the feature

BitsperNoun is eliminated. This reflects a typological
fact, namely that Japanese nouns are usually not marked
for categories such as number and definiteness. The
second feature Verb_LTopic is a system-internal feature
whose assignment differs between English and Japanese.
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Figure 3: Elimination of features in the native Japanese/English comparison

Comparison of Transferred and Native LFs
In order to measure the effect of the transfer module we
used a subset of the features described above in section 3.
Two kinds of features were eliminated. The features that
count bits overwhelmed other features and were mostly
indicative of typological characteristics of the languages
rather than areas requiring system modification. The
second set of eliminated features were those referring to
attributes that are deliberately excluded from the transfer
process. In Figure 4 we compare the native-native LFs

and transferred vs. native LFs for the six language pairs
for which transfer has been implemented. The difference
illustrated reflects the impact of the transfer module. For
example, consider the Spanish-English language pair,
which has received the most attention. The distance
between the native LFs is 68.50. When Spanish LFs are
transferred to English and compared to native English
LFs, the distance decreases to 46.00. A very small adverse
effect (-1.10) in the case of German-English is most likely
due to overfitting.

Figure 4: Measuring the contribution of transfer
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4.3 Inspecting the Decision Trees
We use a modified version of the Dnetviewer tool
(Heckerman et al. 2000) to visually inspect the decision
trees. This tool allows a linguist to view the sentences that
are covered by a particular leaf node in the decision tree,
i.e. that exhibit the properties identified by the features on
the path from root node to leaf node. Figures 5 and 6 show
different views in the Dnetviewer tool. Figure 5 shows a
partial view of the decision tree, displaying some of the

most salient features distinguishing Spanish and Japanese.
The leaf nodes display a probability distribution over the
possible states of the target feature. For the binary
classification shown in Figure 5, the dark portion of the
rectangle indicates p(Japanese) of the logical forms
covered by that leaf node, while the light gray indicates
p(Spanish) of those LFs. As Figure 6 shows, clicking on
the rectangle under a leaf node (the circled leaf node in
Figure 5) displays the sentences covered by that leaf node.

Figure 5: Dnetbrowser view of the decision tree distinguishing native Spanish and Japanese

Figure 6: Dnetbrowser view of the sentences under a leaf node of the decision tree



5. Conclusion
The approach that we have described has a number of
significant advantages. First, this evaluation technique can
be fully automated once the set of features has been
determined. For example, it could be run on a daily or
weekly basis to give reports to measure progress.
Secondly, this approach is completely customizable. Any
reasonable selection of linguistic features can be used to
build a model, and the evaluation process itself is
independent of the framework of a given MT system or
the specifics of the representations used. Finally, we have
shown that the level of error categorization that the
decision tree models goes beyond purely quantitative
assessment of the quality of the transfer process. While
this cannot replace detailed human error analysis for
debugging, it provides a high-level first categorization of
problem areas.
A possible future use of our method is to evaluate
individual logical forms. Once the classifiers have been
trained, they can assign confidence scores to individual
transferred LFs. Those confidence scores can be used, for
example, to trigger repair strategies on representations
that are very different from what an LF in the target
language should typically look like.
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