@inproceedings{carbonell-etal-2002-automatic,
title = "Automatic rule learning for resource-limited {MT}",
author = "Carbonell, Jaime and
Probst, Katharina and
Peterson, Erik and
Monson, Christian and
Lavie, Alon and
Brown, Ralf and
Levin, Lori",
editor = "Richardson, Stephen D.",
booktitle = "Proceedings of the 5th Conference of the Association for Machine Translation in the Americas: Technical Papers",
month = oct # " 8-12",
year = "2002",
address = "Tiburon, USA",
publisher = "Springer",
url = "https://aclanthology.org/2002.amta-papers.1/",
pages = "1--10",
abstract = "Machine Translation of minority languages presents unique challenges, including the paucity of bilingual training data and the unavailability of linguistically-trained speakers. This paper focuses on a machine learning approach to transfer-based MT, where data in the form of translations and lexical alignments are elicited from bilingual speakers, and a seeded version-space learning algorithm formulates and refines transfer rules. A rule-generalization lattice is defined based on LFG-style f-structures, permitting generalization operators in the search for the most general rules consistent with the elicited data. The paper presents these methods and illustrates examples."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="carbonell-etal-2002-automatic">
<titleInfo>
<title>Automatic rule learning for resource-limited MT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jaime</namePart>
<namePart type="family">Carbonell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katharina</namePart>
<namePart type="family">Probst</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Peterson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Monson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alon</namePart>
<namePart type="family">Lavie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ralf</namePart>
<namePart type="family">Brown</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lori</namePart>
<namePart type="family">Levin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2002-oct 8-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Conference of the Association for Machine Translation in the Americas: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Richardson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Springer</publisher>
<place>
<placeTerm type="text">Tiburon, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Machine Translation of minority languages presents unique challenges, including the paucity of bilingual training data and the unavailability of linguistically-trained speakers. This paper focuses on a machine learning approach to transfer-based MT, where data in the form of translations and lexical alignments are elicited from bilingual speakers, and a seeded version-space learning algorithm formulates and refines transfer rules. A rule-generalization lattice is defined based on LFG-style f-structures, permitting generalization operators in the search for the most general rules consistent with the elicited data. The paper presents these methods and illustrates examples.</abstract>
<identifier type="citekey">carbonell-etal-2002-automatic</identifier>
<location>
<url>https://aclanthology.org/2002.amta-papers.1/</url>
</location>
<part>
<date>2002-oct 8-12</date>
<extent unit="page">
<start>1</start>
<end>10</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic rule learning for resource-limited MT
%A Carbonell, Jaime
%A Probst, Katharina
%A Peterson, Erik
%A Monson, Christian
%A Lavie, Alon
%A Brown, Ralf
%A Levin, Lori
%Y Richardson, Stephen D.
%S Proceedings of the 5th Conference of the Association for Machine Translation in the Americas: Technical Papers
%D 2002
%8 oct 8 12
%I Springer
%C Tiburon, USA
%F carbonell-etal-2002-automatic
%X Machine Translation of minority languages presents unique challenges, including the paucity of bilingual training data and the unavailability of linguistically-trained speakers. This paper focuses on a machine learning approach to transfer-based MT, where data in the form of translations and lexical alignments are elicited from bilingual speakers, and a seeded version-space learning algorithm formulates and refines transfer rules. A rule-generalization lattice is defined based on LFG-style f-structures, permitting generalization operators in the search for the most general rules consistent with the elicited data. The paper presents these methods and illustrates examples.
%U https://aclanthology.org/2002.amta-papers.1/
%P 1-10
Markdown (Informal)
[Automatic rule learning for resource-limited MT](https://aclanthology.org/2002.amta-papers.1/) (Carbonell et al., AMTA 2002)
ACL
- Jaime Carbonell, Katharina Probst, Erik Peterson, Christian Monson, Alon Lavie, Ralf Brown, and Lori Levin. 2002. Automatic rule learning for resource-limited MT. In Proceedings of the 5th Conference of the Association for Machine Translation in the Americas: Technical Papers, pages 1–10, Tiburon, USA. Springer.