
Moose: A Robust High-Performance
Parser and Generator

Gábor Prószéky, László Tihanyi, Gábor L. Ugray

Morphologic, Ltd.
1126 Budapest, Orbánhegyi út 5.

{proszeky,tihanyi,ugray}@morphologic.hu

Abstract. This paper describes Moose, a robust bottom-up parser that
implements the MetaMorpho formalism. During the development of the
formalism and the parser we have aimed at a compromise between expressive
power and performance for MT-related applications. The characteristics of an
English-Hungarian grammar are discussed along with the parser.

1. Introduction
The compromise between a natural language
grammar’s expressive power and the performance
of the resulting system is a crucial issue for the
developer of any MT application. By opting for a
high-performance approach, such as finite state
technology, one inevitably has to sacrifice
descriptive power, whilst theoretically motivated
formalisms such as HPSG or LFG rarely have
implementations that are efficient enough for
commercial use. The MetaMorpho formalism, and
Moose, our parser implementation, is an attempt at
a reasonable compromise.

2. The MetaMorpho formalism

2.1 Bottom-up parsing

A MetaMorpho rule is illustrated in Figure 1. The
grammar operates with rule pairs that consist of
one rewrite rule used during bottom-up parsing
and one or more corresponding transfer rules that

are applied during top-down generation. The set of
parse rules effectively forms a phrase-structure
(context free) grammar where each symbol has a
list of typed features. Features can either select
from a set of symbolic values, i.e., {SG, PL}, or
contain a string, such as the lexical form of a
structure’s head; however, the formalism does not
allow for embedded feature structures or functions.
The right-hand side of the parse rule can state
conditions for any of its symbols’ values.

At this level, all conditions and assignments
must be stated explicitly: there are no designated
head or foot features, nor is there any mechanism
to automatically percolate features when a
unification takes place.

2.2 Kills

Each rule can state any number of overrides or
kills on other rules: if the “killer” rule fires over a
specific range of the input, it blocks the “killed”
one over the same range and any productions of
that rule are removed from the chart. This
LHS symbol LHS assignment Rule title Unique ID RHS conditions listed in brackets RHS symbol
*VP=meet+DOBJ:0401311343
EN.VP[TV.conj] = TV(lex=”meet”, pass=NO) + DOBJ
HU.VP(focus=NO, EN.DOBJ.reqfocus=YES) = DOBJ[case=INS] + TV[lex=”találkozik”, VP.tense]
HU.VP = TV[lex=”találkozik”, VP.tense] + DOBJ[case=INS]
Transfer (gen) rules LHS condition Gen RHS sumbol RHS assignment
138

Figure 1. Overview of a MetaMorpho rule illustrating the transitive subcategorization of “meet.” Several
features have been omitted for the sake of clarity.

139

mechanism of overrides extends the expressive
power of the grammar beyond that of pure
context-free formalisms.

Kills are extensively used for syntactic
disambiguation: if a PP, for instance, figures in
two alternative parses as a free adjunct and as the
complement of a VP, respectively, the latter
analysis will override the first.

2.3 Top-down generation

When the whole input is processed and no
applicable rules remain, generation proceeds top-
down from the root symbols by firing the transfer
rule corresponding to the parse rule that created
the edge at parse time – a solution we term
immediate transfer as it uses no separate transfer
mechanism or target transformations. Transfer
rules can have conditions in the left-hand side, and
in the case of multiple transfer rules, the first one
whose conditions are satisfied is fired. This
mechanism allows for a local rearrangement of the
parse tree’s subtrees.

In order to handle more complicated word
order changes, however, a stronger means of
rearrangement is provided also. A subtree can be
memorized in a feature when a unification takes

places at parse time, and this feature’s value can
be percolated up the parse tree and down the
transfer tree just like any other feature. A phrase
swallowed at any level in the source side can thus
be expanded at a completely different location in
the transfer tree.

The power and simplicity of subtree
memorization and random insertion can be
demonstrated with the translation of English
possessive structures into Hungarian: the friend of
the man translates into a-DET férfi-N-NOM/man
barátja-N-POS/friend, i.e., the order of NP’s is
reversed. Through the interplay of only two rules
(the place of memorization at N-bar level and
insertion at NP-level), a possessive structure of
any length is translated recursively in reverse
order into Hungarian. Figure 2 illustrates two such
rules and a more complex possessive structure
translated in this manner.

3. The English-Hungarian grammar
Our grammar, developed in the MetaMorpho
formalism, currently has above 130 thousand
rules, the majority of which are lexicalized items.
The system uses no separate dictionary: what

Figure 2. The source and target trees for “the friend of the wife of my neighbour”, translated as “a
szomszédomnak a feleségének a barátja,” and a simplified version of the two rules involved in the
reverse order translation

NP 345
 NPX 344
 DET lex="the"
 NM 341
 NN 339
 NX 4
 N lex="friend"
 PREP lex="of"
 NP 311
 NPX 310
 DET lex="the"
 NM 307
 NN 305
 NX 99
 N lex="wife"
 PREP lex="of"
 NP 297
 NPX 293
 PRONX 270
 PRON lex="I, case=GEN
 NM 290
 NN 288
 NX 287
 N lex="neighbour"

NP 591{345}
 NPX 592{344}
 NP 593{311}
 NPX 596{310}
 NP 597{297}
 NPX 600{293}
 DET dettype=DEF
 NM 602{290}
 NN 603{288}
 NX 604{287}
 N lex="szomszéd"
 DET dettype=DEF
 NM 599{307}
 NN 606{305}
 NX 607{99}
 N lex="feleség"
 DET dettype=DEF
 NM 595{341}
 NN 609{339}
 NX 610{4}
 N lex="barát"

*NN=NX+of+NP:0109261534-1
EN.NN[lnpf=YES, Left_np<-NP, NX.num] = NX + PREP(lex="of") + NP
HU.NN = NX[NN.case, NN.postp, ownernum=SG, ownerpers=EN.NP.pers]

*NPX=the+NM:0205291509-11
EN.NPX[NM.num] = DET(dettype=DEF) + NM
HU.NPX(EN.NM.lnpf=NO) = DET + NM[NPX.case, NPX.postp]
HU.NPX(EN.NM.lnpf=YES) = NP#1{EN.NM.Left_np}[case=DAT] + DET + NM[NPX.case, NPX.postp]

140

would traditionally be entries in a lexicon are
integrated in the form of rules.

As the grammar uses no feature structures,
complex lexical information such as the subcats of
a verb are not described in terms of features but
by creating separate rules, in this case with a VP
in their left-hand side, for each subcat frame. The
rules in the grammar are much more complex than

the ones shown here. Therefore, for the sake of
human readability and maintainability, lexical
items are coded in a simpler form where all non-
lexical information is omitted. The actual rules are
then generated off-line from their simplified
source, and a large amount of linguistic
knowledge is effectively encoded in this
conversion. The philosophy behind this is to

Translation H1 H2 H3 M M M Net Net Net
Reference 1 H2 H1 H1 H2 H1 H1 H2 H1 H1
Reference 2 H3 H3 H2 H3 H3 H2 H3 H3 H2
N-gram scores

1 .7610 .7476 .5789 .5794 .5317 .5556 .4921 .4604 .4842
2 .4375 .5000 .2832 .1935 .1613 .1855 .0720 .0800 .0720
3 .2844 .3333 .1560 .0833 .0500 .0833 .0082 .0082 .0082
4 .1792 .1979 .0857 .0517 .0258 .0517 0 0 0
5 .1068 .1398 .0297 .0268 .0089 .0268
6 .0700 .0889 .0103 .0093 0 .0093
7 .0412 .0460 0 0 0
8 .0213 .0238
9 .0110 .0123

10 0 0

Table 1. N-gram scores for three human translators (H1 through H3), a machine translator available
on the Internet (Net), and MetaMorpho (M).

remove the burden of interpreting a complex and
linguistically motivated formalism from the parser
while representing the same linguistic knowledge
in an off-line step. It is a remarkable fact that due
to the high proportion of lexicalized rules, 99% of
the actual edges created in a parse are the result of
a very small subset (about 1%) of the whole
grammar. The number of edges generated for a
sentence about 30 tokens longs can be in the
thousands, and this number is expected to grow
significantly as a wider range of gaps is introduced
in the grammar.

The grammar has been evaluated on an English
text against three human translators and an
English-Hungarian machine translator available
on the Internet. Table 1 shows n-gram precision
results for the five translations, each of them
evaluated against two human translations. As can
be expected, the performance of our system lags
far behind human translations; in comparison to
the tested machine translation software, however,
the results are very promising.

4. The parser implementation
The parser engine behind the grammar, Moose, is
implemented as a set of C++ template headers that
can be parametrized according to grammar type
(monolingual, i.e., only parse rules, or bilingual,
i.e., transfer rules also) and function (compiler,
parser and developer).

4.1 Functional versatility

The compiler’s task is to create the binary
grammar from a type description, which is an
XML file containing the grammar symbols and
their features, and any number of text files
containing the rules. Compiling the grammar rules
involves syntactic parsing, semantic checking
against the type descriptions, building an index
tree for the fast and precise retrieval of lexically
specified rules, and saving these structures in a
binary format.

The parser is optimized for grammars
reflecting the philosophy outlined in the previous
section by incorporating the conditions on
designated lexical features into an index of rules.
Lexicalized rules are stored on disk and loaded

141

into memory when they are fired; the precision of
selecting only the applicable rules is very high.

The parser is also implemented with multi-
threading applications in mind. The bulk of the
resources is only loaded into memory once, when
the parser is started up. Individual parsing
requests can be fulfilled simultaneously in
separate sessions, which only contain information
pertaining to the particular parse in question. The
majority of the rules is only loaded into memory,
and stored temporarily in the sessions, when their
lexical conditions are very likely to be satisfied.
The small proportion of very productive rules, at
the same time, is kept permanently in the physical
memory as a shared resource of the parser.

The third function is the developer: it is really
a mixture between the parser and the compiler. It
provides the functionality of a parser, but it also
has an interface through which even individual
grammar rules can be removed, added or
modified, and the changes will immediately apply
during the next parse. This is very important as
long compile times would be a prohibitive factor
in the development of a large grammar such as the
one described above. Beyond grammar
modification, the developer also provides an
interface through which detailed information can
be queried about the last parse chart: rules that
fired, edges that were created from a given
symbol, instantiated kills, removed edges etc.

Code duplication is avoided through the
extensive use of template programming
techniques. While the parsing algorithm is coded
only once, very different underlying
representations are used in the parser and the
developer, as the former is optimized for size and
performance, and the latter has to allow quick
modification of the stored structures.

4.2 Naïve, robust bottom-up parsing

The motivation for creating a robust bottom-up
parser is that the grammar’s applications
invariably require access to a parse’s partial
results even in the absence of a full parse tree. The
parser invokes a user-defined filter when parsing
is complete but before transfer. These filters have
access to all parse trees and can select, for
instance, a disjunct coverage of the input tokens.
Certain features can also be modified at this stage,
thereby allowing for a word sense disambiguation
tool to make its decisions and inject the results
into the parse tree symbols based on syntactic
structure.

Another argument for the chosen parsing
method is the expressive power of rule overrides.

In order to instantiate kills, most possible
directions need to be explored; in a top-down
framework there is no place for the type of
overrides used our grammar is built around.

4.3 Integration with a rule database

A special set of lexicalized rules in the
grammar can be freely extended in real-life
applications through the parser’s integration with
a rule database, for instance, an SQL server. This
allows the controlled addition of lexical items into
an application’s grammar – for instance, new
words, or sub-sentential structures in a translation
memory.

As database rules must be added or removed
individually, they cannot participate in the global
contest of overrides, and they require a separate
indexing mechanism. As the prime objective of
database integration is to allow users to flexibly
increase the lexical coverage of the precompiled,
intransparent grammar, this is a natural limitation.

5. Further applications
Besides being the engine behind the English-
Hungarian machine translator, the parser’s abstract
implementation allows for its use in several other
applications. The integration with an SQL
database forms the basis of the translation memory
(TM) solution currently being developed. For
linguistic research purposes, an NP chunker has
been built that processes approximately 1500
words per second on a P4 machine. As the input
data structure is not wired into the code, we are
also experimenting with a Hungarian morphology
expressed in context-free rules.

6. Future work
The current bottom-up parsing method is a naïve
approach apart from the precise indexing of rules
by their lexical feature conditions. We have opted
for this solution because of the need for
robustness. It has been shown, however, that a
certain type of top-down prediction (limited left
context constraints) can increase efficiency by an
order of magnitude without sacrificing any of the
needed robustness by a better treatment of typical
natural language phenomena such as gaps.
Therefore, within the coming months, we plan to
incorporate some type of top-down prediction into
the parsing algorithm.

142

References
Philippe, McLean and R. Nigel, Horspool (1996). ‘A

Faster Earley Parser’, Proceedings of International
Conference on Compiler Construction, Linkoping,
Sweden, 281–293.

Papineni, Kishore, Roukos, Salim, Ward, Todd, Zhu,
Wei-Jing (2001). ‘Bleu: A Methord for Automatic
Evaluation of Machine Translation’, IBM Report
RC22176

Gábor, Prószéky (2001). ‘Nyelvi technológiák és gépi
fordítás’, Emberi és gépi nyelv, beszéd és hallás,
MTA osztályülés, Budapest

Moore, Robert and Dowding, John (1991). ‘Efficient
Bottom-Up Parsing’, In: Proceedings of the DARPA
Speech and Natural Language Workshop, Asilomar,
CA, 200–203.

Jean, Senellart, Péter, Dienes and Tamás, Váradi (2001).
‘Development of a New Generation of Translation
System’, EAMT 2001

Gertjan, van Noord (1997). ‘An Efficient
Implementation of the Head-Corner Parser’,
Computational Linguistics, volume 23, number 3,
1997.

	Moose: A Robust High-Performance�Parser and Generator
	
	Introduction
	The MetaMorpho formalism
	Bottom-up parsing
	Kills
	Top-down generation

	The English-Hungarian grammar
	The parser implementation
	Functional versatility
	Naïve, robust bottom-up parsing
	Integration with a rule database

	Further applications
	Future work
	
	
	References

