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Abstract. This paper describes how word alignment information makes machine translation more effi-
cient. Following a statistical approach based on finite-state transducers, we perform reordering of source
sentences in training using automatic word alignments and estimate a phrase-based translation model.
Using this model, we translate monotonically taking a permutation graph as input. The permutation
graph is constrained using an efficient and flexible reordering framework. We then propose to automati-
cally identify source word sequences which should always be translated monotonically and keep the word
order of these sequences in search. This allows us to obtain fast good-quality translations. We present
competitive experimental results on the Verbmobil German-to-English and BTEC Chinese-to-English
translation tasks.

1 Introduction

Word reordering is of crucial importance for ma-
chine translation. Most of the phrase-based statisti-
cal approaches like the Alignment Template system
of (Och et al., 2004) rely on reorderings which are
implicitly memorized with each pair of source and
target phrases in training. Additional reorderings
on phrase level are fully integrated into the decod-
ing process, which increases the complexity of the
system and makes it hard to modify.

Other statistical approaches make use of the ef-
ficient search representation with weighted finite-
state transducers (WFSTs). Many of these ap-
proaches use joint probabilities of the source and
the target language string. The automated trans-
ducer inference techniques OMEGA (Vilar, 2000)
and GIATI (Casacuberta et al., 2004) estimate
phrase-based models, but capture reordering only
implicitly in bilingual corpus representations. This
leads to a strong degradation of translation quality
when translating into a language with a completely
different word order. In (Bangalore et al., 2000)
weighted reordering has been applied to target sen-
tences. In order to reduce the computational com-
plexity, this approach considers only a set of plau-
sible reorderings seen on training data.

In this paper, we follow a phrase-based joint-
probability WFST translation approach, in which
source sentence reordering is applied on word level,
both in training and for translation. This is a novel
approach inspired by the work of (Knight et al.,
1998) and (Kumar et al., 2003). In this approach, a
reordering graph is computed on-demand and taken
as input for monotonic translation. The approach is
modular and allows easy introduction of different
reordering constraints and probabilistic dependen-
cies. Here, we extend this approach by introduc-
ing additional restrictions on reorderings. We de-
scribe our efficient finite-state implementations of
IBM (Berger et al., 1996), inverse IBM and local re-
ordering constraints. Furthermore, we apply these
constraints in the search, but keep the word or-
der within source phrases which were consistently
aligned monotonically in training.

In the next section we review the general theory
of our translation system based on weighted finite-
state transducers and describe the use of word align-
ments for reordering in training. We then discuss
three modeling techniques which use alignment in-
formation to establish connections between source
and target words. These connections are needed
in order to estimate the joint translation probabil-
ity. Section 3 describes the on-demand computable
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framework for permutation models and the various
types of the reordering constraints that are applied
in the search. In Section 4 we propose how the
reordering process can be further constrained by
keeping the order of monotonic source sequences.
We conclude the paper with experimental results,
which show the advantages of these constraints on
two translation tasks.

2 Basics of the Translation System

2.1 Bayes Decision Rule

In statistical machine translation, we are
looking for a target language sentence eI

1

which translates a source sentence fJ
1 .

We formulate the Bayes decision rule for
maximizing the posterior probability:

êÎ
1 = argmax

I,eI
1

Pr(eI
1|fJ

1 )

= argmax
I,eI

1

Pr(fJ
1 , eI

1)

= argmax
I,eI

1

∑

A
Pr(A) · Pr(fJ

1 , eI
1|A)

∼= argmax
I,eI

1

max
A

Pr(A) · Pr(fJ
1 , eI

1|A)

Here, the posterior probability Pr(eI
1|fJ

1 ) is rewrit-
ten as a joint probability of the input and the out-
put sentence. The stochastic finite-state transducer
approach allows for convenient modeling of joint
probabilities. We also assume that we have word
level alignments A of all sentence pairs from a
bilingual training corpus and introduce such align-
ments as a hidden variable.

2.2 Word Alignments

The statistical word alignments are used in two
ways. First, we reorder the words in each train-
ing source sentence based on an alignment which
is a function of source words and naturally defines
their permutation (Figure 1). This allows to train a
monotonic translation model.

Next, the goal is to establish connections be-
tween the reordered source and the target words
in order to reliably estimate the joint translation

probability with statistical language modeling tech-
niques. To this end, most of the WFST approaches
aim at a “bilanguage” representation of each pair of
sentences in the training corpus with K bilingual
phrases (f̃k, ẽk), k = 1, ...,K of varying length.
All of these methods do not require, but work espe-
cially well with fully monotonic alignments. Here,
we discuss the most common techniques.

The representation used by e. g. (Bangalore et
al., 2000) allows source and target phrases f̃ and
ẽ to have the length of either 0 or 1. This means
that each pair of training sentences is written with
bilingual tuples (f, e) where either f or e can be a
normal word or an “empty word” which we denote
with $. To create a corpus of such bilingual pairs, a
one-to-one alignment is used. The number of bilin-
gual phrases K can vary from max(I, J) to (I+J).
Whereas the vocabulary size of the corpus in this
representation is relatively limited, m-gram mod-
els with a long history m have to be built to capture
enough phrasal context. Also, the complexity of the
WFST search increases, since epsilon arcs have to
be used in order to hypothesize non-aligned target
words.

In the representation of (Casacuberta et al.,
2004) f̃ is one real source word only, and ẽ is a
contiguous target phrase of 0 or more words. This
representation arises from one-to-many alignments
which are functions of target words. The advan-
tage of this representation is that the search effort
is proportional to the length of the source sentence.
However, the vocabulary size of the “bilanguage”
increases. This may result in data sparsity prob-
lems, which at least partially can be solved with
smoothing techniques.

Finally, (de Gispert et al., 2002) describe bilin-
gual X-grams (f̃ , ẽ) without restrictions on the
length of source or target phrase. This represen-
tation can be derived from a general alignment
with many-to-many connections. The drawback of
this representation is the enormous vocabulary size
which may not allow for reliable estimation of the
translation probability. Another disadvantage is the
inability to translate individual words in f̃ , if e. g.
they do not appear in the training corpus in another
context. In our opinion, however, in at least two
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sehr gut Anfang Mai wuerde passen mir .
the very beginning of May would suit me .

A) $|the sehr|very gut|$ Anfang|beginning $|of
Mai|May wuerde|would passen|suit mir|me .|.

B) sehr|the_very gut|$ Anfang|beginning
Mai|of_May wuerde|would passen|suit mir|me .|.

C) sehr_gut|the_very Anfang|beginning
Mai|of_May wuerde|would passen|suit mir|me .|.

Figure 1. An example of alignment, source sentence reordering, monotonization and some alternative bilingual corpus
representations. Alignment connections: used for reordering and all representations; used for reordering and

representation (C); used for representations (B) and (C); ignored due to the monotonicity requirements.

cases it may be reasonable to include some phrases
f̃ with length > 1. The first case is when several
source words are always translated with one target
word (e. g. translating an English noun phrase into
a German compound). The second case usually
involves non-literal phrase-to-phrase translations,
when translating individual source words does not
convey the meaning of the source phrase.

An example of the source sentence reordering,
as well as of the three described bilingual corpus
representations, labeled with (A),(B), and (C), re-
spectively, is given in Figure 1.

In our approach, we can avoid various heuris-
tics and learn these and other types of corpus repre-
sentations by using a flexible alignment framework
presented in (Matusov et al., 2004). Following this
work, we efficiently compute optimal, minimum-
cost alignments which satisfy certain constraints.
The constraints may include the requirement for
each word to be aligned at least once, functional
form or full monotonicity. Local alignment costs
between a source word fj and a target word ei are
estimated statistically using state occupation prob-
abilities of the HMM and IBM-4 models as trained
by the GIZA++ toolkit (Och et al., 2003).

2.3 Optimization Criterion

Using one of the corpus representations (f̃ , ẽ) via
a certain (constrained) alignment A, we rewrite the
joint translation probability in the decision rule as

follows:

êI
1 = argmax

I,eI
1

max
A

Pr(A) · Pr(fJ
1 , eI

1|A)

= argmax
ẽK
1

max
A,K

Pr(A) · Pr(f̃K
1 , ẽK

1 |A,K)

∼= argmax
ẽK
1 ,A,K

K∏

k=1

Pr(f̃k, ẽk|f̃k−1
1 , ẽk−1

1 , A,K)

∼= argmax
ẽK
1 ,A,K

K∏

k=1

p(f̃k, ẽk|f̃k−1
k−m, ẽk−1

k−m, A,K)

In other words: the translation problem is mapped
to the problem of estimating an m-gram language
model over a learned set of bilingual tuples (f̃k, ẽk).
Mapping the bilingual language model to a WFST
T is canonical.

3 Reordering in Search

Since we chose to reorder source sentences in train-
ing and translate monotonically, we can properly
translate only sentences which have the word or-
der of the target language. To overcome this ob-
stacle, the input sentence has to be permuted, and
the translation model will then select the best path
through the permutation graph in a global decision
process.

When searching the best translation ẽK
1 for a

given source sentence fJ
1 , we firstly represent this

input sentence as a linear automaton with word-
labeled arcs (see top of Figure 3). We then com-
pute permutations of this automaton as described
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Figure 2. Permutations of a) positions j = 1, 2, 3, 4 of a
source sentence f1f2f3f4 using a window size of 2 for b)
IBM constraints, c) inverse IBM constraints and d) local

constraints.

in (Knight et al., 1998). The overall search prob-
lem can be rewritten using finite-state terminology
(Kanthak et al., 2004):

êI
1 = project-output(best(permute(fJ

1 ) ◦ T ))

This implementation of the search problem with
weighted finite-state transducers is very efficient.
However, permuting an input sequence of J sym-
bols results in J ! possible permutations, i. e. in
exponential complexity. Therefore, we compute
a constrained permutation automaton on-demand
while optionally applying beam pruning in the
search.

For on-demand computation of an automaton
we specify a state description and an algorithm that
calculates all outgoing arcs of a state from the state
description. In our case, each state represents a per-
mutation of a subset of the source words fJ

1 , which
are already translated. This can be described by a

bit vector bJ
1 . Each bit of the state bit vector corre-

sponds to an arc of the linear input automaton and
is set to one if the arc has been used on any path
from the initial to the current state. The bit vectors
of two states connected by an arc differ only in a
single bit. Note that bit vectors elegantly solve the
problem of recombining paths in the automaton as
states with the same bit vectors can be merged. As
a result, a fully minimized permutation automaton
has only a single initial and final state.

Even with on-demand computation, complexity
using full permutations is unmanageable for long
sentences. We further reduce complexity by addi-
tionally limiting permutations with the constraints,
which we describe in the following. For all of these
constraints, we use implementations with bit vector
state descriptions to compute constrained permuta-
tion graphs on-demand. Refer to Figure 2 for their
visualizations.

The IBM reordering constraints are well-known
in the field of machine translation and were first
described in (Berger et al., 1996). The idea be-
hind these constraints is to deviate from monotonic
translation by postponing translations of a limited
number of words. More specifically, at each state
we can translate any of the first l yet uncovered
word positions. For consistency we associate win-
dow size with the parameter l.

For some language pairs, it is beneficial to trans-
late some words at the end of the sentence first and
to translate the rest of the sentence nearly monoton-
ically. Following this idea we can define the inverse
IBM constraints. Let j be the first uncovered posi-
tion. We can choose any position for translation,
unless l − 1 words on positions j′ > j have been
translated. If this is the case we must translate the
word in position j.

For some language pairs, e.g. Italian – English,
words are moved only a few positions to the left or
right. The IBM constraints provide too many alter-
native permutations to chose from as each word can
be moved to the end of the sentence. A solution that
allows only for local permutations and therefore has
very low complexity is given by the following per-
mutation rule: the next word for translation comes
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Figure 3. An example of local constraints with window size of 2.

from the window of l positions1 counting from the
first yet uncovered position. Note, that the local
constraints define a true subset of the permutations
defined by the IBM constraints. Figure 3 illustrates
these most restrictive, but efficient constraints with
the window size of 2 when permuting the German
sentence “ja, wir können mein Auto nehmen”.

We also introduce weights to the constraints and
normally give higher probability to the arcs of the
monotonic path through the reordering graph, while
penalizing the non-monotonic ones.

4 Monotonic Sequences

Even with constrained reordering, the search space,
especially for long sentences, may become too large
to handle. However, many paths in the reordering
graph are not relevant for translation and may even
be harmful for the performance. Usually, each input
source sentence can be viewed as several sequences
of n ≥ 1 words, each of which should be translated
monotonically.

We propose to identify such sequences in train-
ing and forbid permutations which change the word
order within such sequences, or break them up. To
this end, we collect statistics over the training cor-
pus by considering alignments which are functions
of source words. We extract consecutive source
phrases of various length (≤ 10), which were con-
sistently aligned with some target words in a mono-
tonic way.

When translating a source sentence, we search
for monotonic sequences observed in training and
perform longest match. We then concatenate all
the words in the found monotonic sequences and
use them to label only one arc in the linear au-
tomaton (see e. g. top of Figure 4). When overlap-
ping matches exist, we unite the matched sequences

1both covered and uncovered

and thus are able to identify longer monotonic se-
quences not observed in training.

We permute the transformed linear automaton
under some constraints using on-demand computa-
tion. Next, we make the reverse transformation and
replace each arc in the reordering graph which is
labeled with n words by n single-word arcs. This
allows us to apply the bilingual m-gram language
model transducer on the original lexical entries and
make use of its generalization capability. All of
these steps are efficiently realized at runtime with
generic composition operations. The resulting per-
mutation graph is shown in Figure 4. Note that it is
significantly more compact than the corresponding
graph in Figure 3 and contains the most plausible
reorderings only. In particular, the movements of
the verb “nehmen” are not restricted, which makes
it possible for the system to choose the sequence of
arcs “können nehmen” for correct phrasal transla-
tion with “can take”.

It is also possible to generalize from the mono-
tonic sequences in training by matching corre-
sponding sequences of word classes or part-of-
speech tags. Another application of the presented
technique would be to explicitly forbid reorderings
of word sequences which must be a-priori trans-
lated monotonically, like sequences of digits, time
and date expressions, multi-word names, spelled
letters, etc.. Such restrictions are especially impor-
tant for subjective user appreciation of the system’s
performance.

5 Experimental Results

5.1 Corpus Statistics

The translation experiments were carried out on the
Basic Travel Expression Corpus (BTEC), a mul-
tilingual speech corpus which contains tourism-
related sentences usually found in travel phrase
books. We tested our system on the Chinese-
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Figure 4. Reordering with local constraints and window size of 2 and non-reordered monotonic sequences.

Chinese English

Train sentences 20 000
words 182 904 160 523
singletons 3 525 2 948
vocabulary 7 643 6 982

Test sentences 506
words 3 515 3 595

Table 1. Statistics of the Basic Travel Expression corpus.

German English

Train Sentences 58 073
Words 519 523 549 921
Vocabulary 7 939 4 672
Singletons 3 453 1 698

Lexicon Entries 12 779
Test Sentences 251

Words 2 628 2 871

Table 2. Statistics of the Verbmobil corpus.

to-English Supplied Task, the corpus for which
was provided during the International Workshop on
Spoken Language Translation (IWSLT 2004) (Ak-
iba et al., 2004). The corpus statistics for the BTEC
corpus are given in Table 1. We evaluate the im-
pact of the proposed reordering restrictions on the
CSTAR 2003 test set with 506 Chinese sentences
and 16 reference translations.

We also present results on the Verbmobil task
(Wahlster, 2000). The domain of this corpus is
appointment scheduling, travel planning, and hotel
reservation. It consists of transcriptions of sponta-
neous speech. Table 2 shows the statistics of this
corpus.

5.2 Evaluation Criteria

For the automatic evaluation, we used the word er-
ror rate (WER), position-independent word error

rate (PER), and the BLEU score (Papineni et al.,
2002). This score measures accuracy, i. e. larger
scores are better. The three measures were com-
puted with respect to multiple reference transla-
tions, when they were available. To indicate this,
we will label the error rate acronyms with an m.
On the Chinese-to-English BTEC task, both train-
ing and evaluation were performed using corpora
and references in lowercase and without punctua-
tion marks.

5.3 Experiments

As described in Sec. 2.2, we reordered the source
sentences in training. We then created a bilingual
corpus of tuples (fj , ẽj) (i. e. representation (B) in
Figure 1) based on a fully monotonic alignment that
is a function of target words. Using this corpus,
we estimated a smoothed m-gram language model2

and represented it as a finite-state transducer.

When translating, we applied moderate beam
pruning to the search graph only when necessary.
This allowed for reasonable translation times and
memory consumption without a significant nega-
tive impact on performance. In baseline exper-
iments, we did not reorder source sentences in
the search. In all other experiments where con-
strained reordering was permitted, we obtained
most optimal results when we restricted reordering
in matched word sequences which had been mono-
tonically aligned in training more than 50 % of the
time. With this setting, the average number of arcs
in a linear automaton representation of a sentence
decreased from 7 to about 5 for the BTEC test set,
and dramatically from more than 10 to 6 for the
Verbmobil test set.
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Figure 5. Word error rate [%] as a function of the
reordering window size for different reordering

constraints: Chinese-to-English translation.

mWER mPER BLEU speed mem

[%] [%] [%] [w/s] [MB]

baseline∗ 54.0 42.3 23.0 110 28
4-inv-ibm 48.0 39.4 33.2 0.5 402
3-inv-ibm♦ 49.1 40.3 30.1 7 94
5-local♦ 49.4 40.2 31.2 56 62

Table 3. Translation quality and efficiency on the BTEC
task, development corpus (∗:full search; ♦: with fixed

word order in monotonic sequences).

5.3.1 Chinese-to-English Translation
Word order in Chinese and English is somewhat
similar. However, a few word reorderings over
quite large distances may be necessary. This is es-
pecially true in case of questions, in which question
words like “where” and “when” are placed, unlike
in English, at the end of a sentence. Based on these
observations, we expected that identifying mono-
tonic sequences will result in faster and better trans-
lations under reordering constraints with small win-
dow sizes.

The best translation results for this task were
achieved under inverse IBM reordering constraints
with window size ≥ 4. Figure 5 shows that using
monotonic sequences in which the words are not
permuted in search, we can achieve similar perfor-
mance with window size 3. The local constraints
generally perform well on this task only for very
large window sizes ≥ 9. By keeping the word order
in monotonic sequences, we are able to reach sim-

2m = 4 on the BTEC task, m = 3 on the Verbmobil task.

ilar performance with a window size of 5 or 6. Ta-
ble 3 presents all error measures, as well as time and
memory usage for three configurations with similar
word error rate. Keeping the word order in mono-
tonic sequences fixed, we observed dramatic im-
provements in translation speed from 0.5 to 7, or
even to 56 words per second3 without a large degra-
dation of the performance.

The increase in the word error rate for larger
window sizes with the proposed restrictions can
be explained by insufficient alignment quality.
In some alignments in training, source word se-
quences were incorrectly aligned monotonically.
Their permutation may be useful, but is not per-
formed in translation process.

5.3.2 German-to-English Translation
German language differs in word order from En-
glish mainly in the position of verbs and verb pre-
fixes, which often appear at the end of a sentence.
Reordering is very important to achieve good trans-
lation performance.

The Alignment Template system of (Och et al.,
2004) performs phrasal reordering using a compli-
cated graph search algorithm with extensive prun-
ing and heuristic functions for rest cost estimation.
It also incorporates several features like the lexicon
scores, word penalty, etc., the scaling factors for
which have to be optimized. In contrary, our system
uses only the translation model score and limited
computational resources, so that pruning is often
not necessary and search errors can be avoided al-
together. Nevertheless, using weighted constrained
reorderings in search, we can report competitive
translation results.

For three different types of reordering con-
straints, the window size and probability for the
monotonic path were optimized on a development
set. The best word error rate on the test set is
achieved under IBM constraints with a window size
of 4 (see Table 4). Pruning is necessary, and the
translation speed is 8 words per second. Using in-
verse IBM constraints, we are able to get the low-
est position-independent error rate of 26.5 % re-
ported in (Och et al., 2004). Here we perform full

32 x Pentium III 600MHz, 1GB RAM.
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mWER PER BLEU speed mem
[%] [%] [%] [w/s] [MB]

baseline 41.5 29.1 40.6 170 28
3-inv-ibm 37.5 26.5 50.5 2 80
4-ibm� 36.2 27.4 49.1 8 62
2-inv-ibm 36.9 26.9 50.3 13 37
3-local♦ 36.3 27.3 49.9 35 53

Table 4. Translation quality and efficiency on the
Verbmobil task (�: with beam pruning; ♦: with fixed word

order in monotonic sequences).

search and translate at a speed of 2 words per sec-
ond. At the same time, when we keep the word or-
der in the monotonic sequences fixed, we can pro-
duce translations of almost the same quality using
the efficient local constraints at the rate of 35 words
per second. Thus, the efficiency of the translation
increases without significant loss in performance.
Fast translations are quite important in the appli-
cations similar to the original Verbmobil project –
speech-to-speech dialogue translation.

6 Conclusion
In this paper, we described a novel extension to
the reordering framework which performs source
sentence reordering on word level. We employed
a monotonic phrase-based translation system that
takes a reordering graph as input. Based on statis-
tics for monotonically aligned source word se-
quences in training, we identified source phrases
in the input sentences, the word order in which
should be kept fixed. Using an efficient finite-
state implementation, we included the modeling
of such phrases into the framework which realizes
constrained, weighted, on-demand computable per-
mutations. We showed that this new component
significantly improves the efficiency of the search,
while allowing quality translations into a language
with different word order. We achieved competi-
tive results on Chinese-to-English and German-to-
English tasks. In the future, we would like to ex-
plore more sophisticated probability distributions
for the reordering alternatives.
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