

The ITC-irst SMT System for IWSLT-2005

B. Chen, R. Cattoni, N. Bertoldi, M. Cettolo, M. Federico

ITC-irst - Centro per la Ricerca Scientifica e Tecnologica 38050 Povo (Trento), Italy

Log-Linear Model Approach to SMT

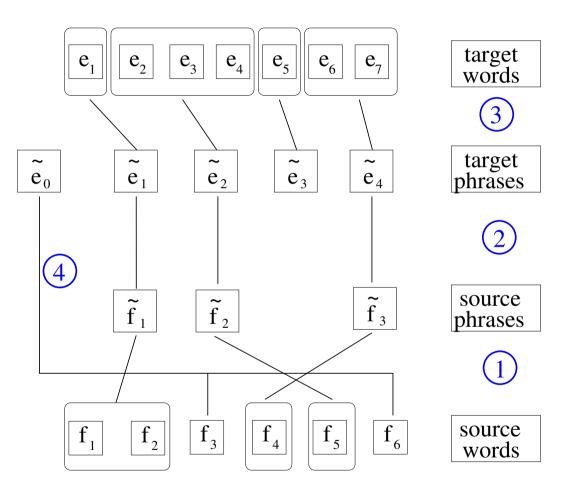
Maximum Entropy framework for the word-alignment MT approach:

$$\mathbf{e}^* = \arg \max_{\mathbf{e}} \max_{\mathbf{a}} \Pr(\mathbf{e}, \mathbf{a} \mid \mathbf{f}) = \arg \max_{\mathbf{e}} \max_{\mathbf{a}} \sum_{i} \lambda_i h_i(\mathbf{e}, \mathbf{f}, \mathbf{a})$$
(1)

where f =source, e =target, a =alignment, and $h_i(e, f, a)$ are suitable feature functions.

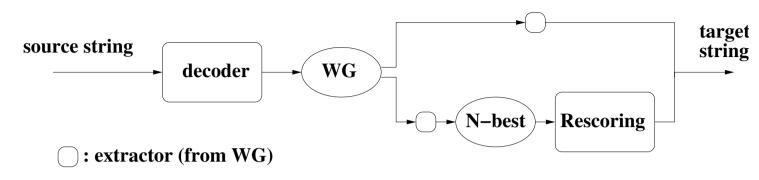
Advantages:

- directly models the posterior probability (discriminative model)
- does not rely on probability factorizations with independence assumptions
- is mathematically sound and allows to add any kind of feature function
- includes any IBM model as a special case
- minimum error training to estimate free parameters (λ_i)



Phrase-based Model

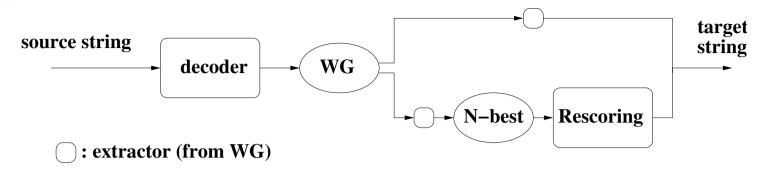
- A phrase is a sequence of one or more words without semantic/syntactic meaning
- Generative process:
 - 1. cover new source positions (distortion)
 - 2. link to target phrase (fertility, lexicon)
 - 3. add target phrase (language model)
 - 4. untranslated words ($\tilde{e_0}$ -fertility, lexicon)


Search is over strings of phrases:

$$\tilde{\mathbf{e}}^* = \arg\max_{\tilde{\mathbf{e}}} \max_{\mathbf{a}} \sum_{i} \lambda_i h_i(\tilde{\mathbf{e}}, \mathbf{f}, \mathbf{a}) \}$$

Two Pass Search Strategy

First Pass:


- Log-linear Model
- Dynamic programming algorithm
- Beam search decoder:
 - threshold and histogram pruning
- Non-monotone search constraints
 - max number of vacancies on the left (MVN)
 - max distance from left-most vacancy (MVD)

Second Pass:

- Extraction of 1,000-best
- Log-linear Model
- Re-ranking algorithm

Two Pass Search Strategy

First Pass feature functions:

- Target 3-gram LM
- Fertility model target phrases
- Direct phrase-based lexicon
- Inverse phrase-based lexicon
- Negative distortion
- Positive distortion
- \tilde{e}_0 fertility
- \tilde{e}_0 permutation

Training of Phrase-based model

Phrase-based model (baseline):

- Word-alignment: union of direct and inverse IBM alignments (GIZA++, $1^{5}H^{5}3^{4}4^{4}5^{4}$)
- Phrase-extraction: max length 8, filtering (length or punctuation mismatches)
- Feature estimation: lexicon, fertility models (... by freq smoothing ...)
- Monotone search: MVD=0

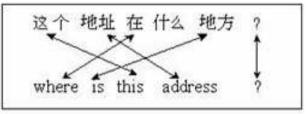
Improvements by exploiting Competitive Linking Algorithm (Melamed, 2000):

- CLA translation lexicon added to data before word-alignment
- CLA word-alignments added to IBM word alignments before phrase-extraction
- Re-segmented Chi/Jap data added to training data before word-alignment (in-house tool)

Experimental Results: First Pass

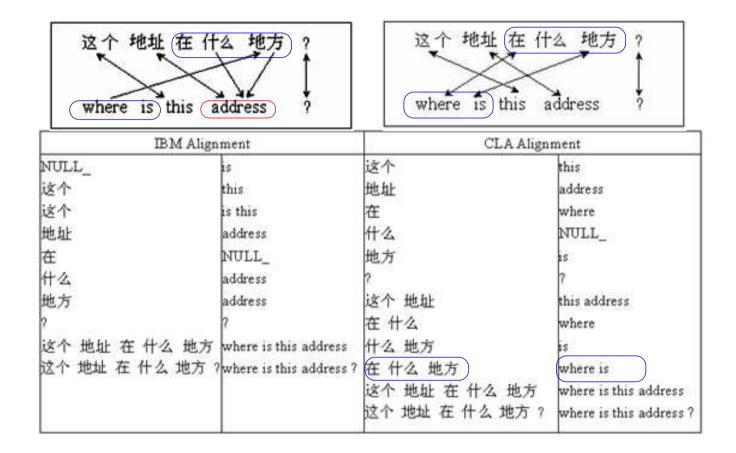
- Task: Supplied Data Condition
- Lang: Chinese, Japanese, Arabic
- Test set: IWSLT 2004
- Dev set: CSTAR 2003
- BLEU%:no-case with punctuation
- No weight optimization
- Non-monotone search:
 - MVD=4 MVN=3 Arabic
 - MVD=6 MVN=5 Chinese
 - MVD=7 MVN=6 Japanese

System	Chi2Eng	Jap2Eng	Ara2Eng
baseline	35.82	33.82	51.01
+CLA translation lexicon	36.28	35.78	52.84
+CLA alignments	37.59	38.77	54.14
+re-segmented data	38.29	38.97	-
+chunked data	_	39.59	_
+non-monotone search	42.51	44.66	56.40

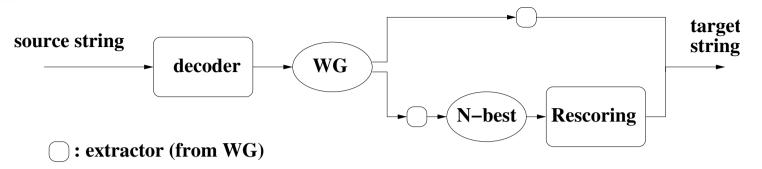

CLA alignments vs. IBM Alignments

- IBM alignments are many-to-one
- CLA alignments are one-to-one
- CLA alignments have higher precision
- CLA alignments allow for more phrase-pairs

IBM alignments (direct and inverse):


CLA alignment:

Despite past work (Och & Ney, 2003) showed that quality of CLA alignments is poorer than for IBM Model 1, we found that such alignments work indeed well for phrase-based SMT.


Phrase extraction from IBM and CLA alignments

In this real example, the CLA alignment allows to extract the useful phrase "where is".

Two Pass Search Strategy

Second Pass feature functions:

- IBM model 1 lexicon score
- IBM model 3 lexicon score
- CLA lexicon score
- Question feature
- Frequency of n-grams within n-best
- ratio of target source lengths
- 2-gram target LM
- 4-gram target LM
- 5-gram target LM

New Feature Functions in Re-scoring

The following statistics are computed on each entry of the 1000-best list:

• CLA alignment score

Integrates the CLA associative score over all possible word alignments between source and target, similarly to how is done for IBM Model 1 re-scoring

• Question tag

Triggers a binary feature when the string ends with a question mark and starts with one of the following words: what, which, who, when, how, do, did, ...

• N-gram frequency

Counts the frequencies of its n-grams (n=1,2,3,4) within the full n-best list and sums them up according to a linear combination.

Experimental Results: Re-scoring Stage

- Task: Supplied Data Condition
- Lang: Chinese, Japanese, Arabic
- BLEU%:no-case with punctuation
- Test set: IWSLT 2004
- Dev set: CSTAR 2003
- Optimization: BLEU% + 4 * NIST
- N-best 1000

Chi2Eng	Jap2Eng	Ara2Eng
42.51	44.66	56.40
42.31	44.48	56.00
41.53	44.97	56.16
42.42	45.20	56.31
42.81	45.83	56.66
43.71	46.19	56.89
41.11	41.00	50.87
44.06	45.34	56.07
45.88	45.51	56.72
45.72	45.81	56.61
47.99	51.01	57.94
	42.51 42.31 41.53 42.42 42.81 43.71 41.11 44.06 45.88 45.72	42.51 44.66 42.31 44.48 41.53 44.97 42.42 45.20 42.81 45.83 43.71 46.19 41.11 41.00 44.06 45.34 45.88 45.51 45.72 45.81

Conclusions

Main performance improvements came from:

- Integration of IBM and CLA word-alignments at different levels:
 - Translation lexicon used to constrain IBM alignments
 - Phrase-extraction performed on both CLA and IBM word-alignments
- Use of multiple word segmentations for Chinese, Japanese
- New feature functions used for n-best re-scoring:
 - Associative score from CLA
 - Frequency of n-grams in n-best list
 - High order language models (4-gram 5-gram)
- Optimization of non-monotone search constraints

The End ... Thank You!