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Abstract
This paper describes our recent work on integrating speech
recognition and machine translation for improving speech
translation performance. Two approaches are applied and
their performance are evaluated in the workshop of IWSLT
2005. The first is direct N-best hypothesis translation,
and the second, a pseudo-lattice decoding algorithm for
translating word lattice, can dramatically reduce compu-
tation cost incurred by the first approach. We found in the
experiments that both of these approaches could improve
speech translation significantly.

1. Introduction

At least two components are involved in speech to speech
translation: automatic speech recognizer and machine trans-
lation. Unlike plain text translation, the performance of
speech translation may be degraded due to the speech
recognition errors.

Several approaches have been proposed to compen-
sate for the loss of recognition accuracy. [1] proposed
N -best recognition hypothesis translation, which trans-
lates all the top N hypotheses and then outputs the high-
est scored translations by ways of weighing all the trans-
lations using a log-linear model. [2] used word lattices
to improve translations. [3] used finite state transducers
(FST) to convey the features from acoustic analysis and
source target translation models. All these approaches
realized an integration between speech recognition mod-
ules and machine translation modules so that information
from speech recognition, such as acoustic model score
and language model score, can be exploited in the trans-
lation module to achieve the maximum performance over
the single-best translation.

In the field of machine translation, the phrase-based
statistical machine translation approach is widely accepted
at present. The related literature can be found in [4] [5].
But previously, word-based statistical machine transla-
tion, pioneered by IBM Models 1 to 5 [6], were used
widely. In the evaluation, we used both the word-based
and phrase-based systems. However, the purpose of this
work is not to compare performance of word-based with
phrase-based translation. We used two system for dif-
ferent translations. The phrase-based SMT is used in
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Figure 1: N-best hypothesis translation

Chinese-English translation while the word-based SMT
is used in Japanese-English translation.

In this paper we describe two speech translation struc-
tures. The first is a direct N-best hypothesis translation
system that uses a text-based machine translation engine
to translate each of the hypotheses, and the results are
rescored by a log-linear model. The second is a pseudo-
lattice translation system, merging the N -best hypotheses
into a compact pseudo-lattice which serves as an input to
our proposed decoding algorithm for lattice translation.
This algorithm runs much faster than the first approach.

In the following, Section 2 describes the direct N-best
hypothesis translation. Section 3 describes the pseudo-
lattice translation. Section 4 introduces the experimental
process and translation results in the evaluation of IWSLT2005.
Section 5 presents our conclusions concerning the tech-
niques, and some final remarks are given.

2. Direct N-best hypothesis translation

The structure of the direct N-best hypothesis translation
is illustrated in Fig. 1, where there are three modules, an
automatic speech recognizer(ASR), a statistical machine
translation(SMT), and a log-linear model rescore(Rescore).
This structure is used in Chinese to English translation in
the evaluation.

2.1. ASR: automatic speech recognition

ASR functions as a decoder to retrieve the source tran-
script from input speech. The input is a speech signal, X .
The output is a source sentence, J . The mechanism of
ASR is based on HMM pattern recognition. The acoustic
models and language models of the source language are
required in the decoding. Because speech recognition er-
rors are unavoidable, ASR outputs multiple hypotheses,
the top N-best, to increase the accuracy.



2.2. SMT: statistical machine translation

The SMT module is to translate the source language, J ,
into target language, E. A phrase-based statistical ma-
chine translation decoder was used in the evaluation. The
decoding process is carried out in three steps: First, a
word graph is created by beam-search where phrase trans-
lation models and trigram models are used to extend beams.
Second, A* search is used to find the top N-best paths in
the word graph. Finally, long-range(> 3) language mod-
els are used to rescore the N-best candidates and output
the best one.

In order to collect source-target translation pairs, we
used GIZA++ to do bi-directional alignment, similar to [5].
In one direction alignment, one source word is aligned to
multiple target words; In the other direction, one target
word is aligned to multiple source words. Finally, the bi-
directional alignment are merged and the phrase pairs are
extracted from the overlapping alignments.

The translation probability of translation pairs were
computed by relative frequency, counting the co-occurrences
of the pairs in the training data.

2.3. Rescoring: log-linear model rescoring

Loglinear models are applied to rescore the translations
which are produced by SMT. The model integrates fea-
tures from both ASR and SMT. We used three features
from ASR and 10 features from SMT.

The log-linear model used in our speech translation
process, P (E|X), is

PΛ(E|X) =
exp(

∑M

i=1
λifi(X, E))

∑
E

′ exp(
∑M

i=1
λifi(X, E

′))
Λ = {λM

1 }

(1)
Features from ASR include acoustic model score, source

language model score, and posterior probability calcu-
lated as below.

P (X |Jk)P (Jk)∑
Ji

P (X |Ji)P (Ji)
(2)

Features from SMT include target word language model
score, class language model score, target phrase language
model, phrase translation model, distortion model, length
model (defined as the number of words in the target),
deletion model (defined as the NULL word alignment),
lexicon model (obtained from GIZA++), and size model
(representing the size of jump between two phrases.)

For the optimal value of λ, our goal is to minimize
the translation “distortion” between the reference transla-
tions, R, and the translated sentences, Ê .

λM
1 = optimize D(Ê ,R) (3)

where Ê = {Ê1, · · · , ÊL} is a set of translations of all
utterances. The translation Êl of the l-th utterance is pro-
duced by Eq. 1.

Let R = {R1, · · · , RL} be the set of translation ref-
erences for all utterances. Human translators paraphrased
16 reference sentences for each utterance, i.e., Rl con-
tains 16 reference candidates for the l-th utterance.

D(Ê ,R) is a translation “distortion”, that is, an objec-
tive translation assessment. A basket of automatic evalu-
ation metrics can be used, such as BLEU, NIST, mWER,
mPER and GTM.

Because the distortion function, D(Ê ,R), is not a
smoothed function, we used Powell’s search method to
find a solution [7].

The experimental results in [1] have shown that mini-
mizing the translation distortion in development data is an
effective method to improve translation qualities of test
data.

3. Pseudo-lattice translation

The N -best hypothesis translation improved speech trans-
lation significantly, as found in [1]. However, the ap-
proach is inefficient, computationally expensive and time
consuming.

We proposed a new decoding algorithm, pseudo-lattice
decoding, to improve on the direct N-best translation. This
approach can also translate the N-best hypotheses, and
the processing time is shorten dramastically because the
same word IDs appearing in the N-best hypotheses are
translated fewer times than the direct N-best translation.

We start from the word lattice minimization produced
by ASR to describe the approach.

3.1. Minimizing the source word lattice(SWL)

Because we use HMM-based ASR to generate the raw
source word lattice(SWL), the same word ID can be rec-
ognized repeatedly in slightly different frames. As a re-
sult, the same word ID may appear in multiple edges in
the SWL. Hence, when N -best hypotheses are generated
from the word lattice, the same word ids may appear in
multiple hypotheses.

Fig. 2 shows an example of lattice downsizing. The
word IDs are shown in the parentheses. We use the fol-
lowing steps to minimize the raw SWL by removing the
repeated edges. First, from the raw SWL we generate N -
best hypotheses as a sequence of edge numbers. We list
the word IDs of all the edges in the hypotheses, remove
the duplicate words, and index the remainders with new
edge IDs. The number of new edges is fewer than that
in the raw SWL. Next, we replace the edge sequence in
each hypothesis with a new edge ID. If more than one
edge shares the same word ID in one hypothesis, we add
a new edge ID for the word again and replace the edge
with the new ID. Finally, we generate a new word lattice
with a new word list as its edges, consisting of the N -best
hypotheses only. The raw SWL becomes the downsized
SWL, which is much smaller than the raw SWL. On av-



erage, the word lattice is reduced by 50% in our experi-
ments.

As shown in Fig. 2, one hypothesis is removed after
minimization.

Sometimes the downsized SWL cannot form a lat-
tice, but the N -best ASR hypotheses with newly assigned
edge IDs. So we denote the downsized SWL as a pseudo-
lattice.

3.2. Pseudo-lattice decoding algorithm

We use beam search followed by a A* search in pseudo-
lattice translation. This approach has been used in text
translation by [8]. We extend the approach to speech
translation in this work. It is a two-pass decoding process.
The first pass uses a simple model to generate a word
graph to save the most likely hypotheses. It amounts to
converting the pseudo word lattice into a target language
word graph (TWG). Edges in the SWL are aligned to the
edges in the TWG. Although the SWL is a faked lattice,
the generated TWG has a true graph structure. The sec-
ond pass uses a complicated model to output the best hy-
pothesis by traversing the target word graph.

We describe the two-pass WLT algorithm in the fol-
lowing two sections.

3.2.1. First pass — from SWL to TWG

The bottom of Fig. 3 shows an example of a translation
word graph, which corresponds to the recognition word
lattice in the top. Each edge in the TWG is a target lan-
guage word which is a translation of a source word in the
SWL. The edges that have the same structure(including
alignment and target context) are merged into a node. The
node has one element indicating the source word cover-
age up to the current node. The coverage is a binary vec-
tor with size equal to the number of edges in the SWL,
indicating the number of translated source edges. If the
j-th source word was translated, the j-th element is set to
1; otherwise it equals 0. If a node covers all the edges of
a full path in the SWL, it connects to the last node, the
terminal node, in the TWG.

There are two main operations in expanding a node
into edges: DIRECT and ALIGN. DIRECT extends the
hypothesis with a target word by translating an uncov-
ered source word. The target word is chosen based on
current target N -gram context and possible translations
of the uncovered source word.

ALIGN extends the hypothesis by aligning one more
uncovered source word to the current node to increase
fertilities of target word, where the target word is a trans-
lation of multiple source words.

The edge is not extended if the resulted hypothesis
does not align to any hypothesis in the SWL. If the node
has covered a full path in the SWL, this node is connected
to the end node. When there is no nodes available for

Algorithm 1 Conversion Algorithm from SWL to TWG

1: Initialize graph buffer G[0]=0; t=0
2: DO
3: FOR EACH node n=0,1,..., #(G[t]) DO
4: IF (n cover A FULL PATH) NEXT
5: FOR EACH edge l=0,1,...,#(EDGES) DO
6: IF (n cover l) NEXT
7: IF (n not cover ANY SWL PATH) NEXT
8: generate new node and push to G[t+1]
9: merge and prune nodes in G[t+1]
10: t= t+1
11:WHILE (G[t] is empty)

possible extension, the conversion is completed. A sim-
ple example of conversion algorithm is shown in Algo-
rithm 1. The whole process equals to growing a graph.
The graph can be indexed in time slices because the new
nodes are created based on the old nodes of the last near-
est time slice. New nodes are created by DIRECT or
ALIGN to cover the uncovered source edge and connect
to the old nodes. The new generated nodes are sorted in
the graph buffer and merged if they share the same struc-
ture: the same coverage, the same translations, and the
same N -gram sequence. If the node covers a full hypoth-
esis in the SWL, the node connects to the terminal node.
If no nodes need to be expanded, the conversion termi-
nates.

In the first pass, we incorporate a simpler transla-
tion model into the log-linear model: only the lexical
model, IBM model 1. The ASR posterior probabilities
Ppp are calculated by partial hypothesis from the start to
the current node. Ppp uses the highest value among all the
ASR hypotheses under the current context. The first pass
serves to keep the most likely hypotheses in the transla-
tion word graph, and leave the job of finding the optimal
translation to the second pass.

3.3. Second pass — by an A* search to find the best
output from the TWG

An A* search traverses the TWG generated in the last
section – the best first approach. All partial hypotheses
generated are pushed into a priority queue with the top
hypothesis popping first out of the queue for the next ex-
tension.

To execute the A* search, the hypothesis score, D(h, n),
of a node n is evaluated in two parts: the forward score,
F (h, n), and the heuristic estimation, H(h, n), D(h, n) =
F (h, n) + H(h, n). The calculation of F (h, n) begins
from the start node and accumulates all nodes’ scores be-
longing to the hypothesis until the current node, n. The
H(h, n) is defined as the accumulated maximum proba-
bility of the models from the end node to the current node
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n.
In the second pass we incorporated the features of

IBM Model 4 into the log-linear model. However, we
cannot use IBM Model 4 directly because the calcula-
tions of the two models, P (Φ0|E) and D(E, J), require
the source sentence, but in fact this is unknown. Hence,
the probability of P (Φ0|E) and D(E, J) cannot be cal-
culated precisely in decoding. Our method to resolve this
problem is to use the maximum over all possible hypothe-
ses. For the above two models, we calculated the scores
for all the possible ASR hypotheses under the current
context. The maximum value was used as the model’s
probability.

4. Experiments in the IWSLT2005
evaluation

There are five languages involved in the evaluation: En-
glish, Chinese, Japanese, Korean and Arabic. The avail-
able translation directions are: Chinese to English, En-
glish to Chinese, Japanese to English, Korean to English,
and Arabic to English. Of these choices we participated
in two tasks: Chinese to English translation and Japanese
to English translation.

Regarding the data for training the translation engine,
the participants must conform to four data tracks: sup-
plied data provided by the organizer; supplied data+tools,
which allows the participant to make word segmentation
and morphlogical analysis of the supplied data; unrestricted
data, any public data from public sources like LDC or
webs; C-STAR data, with no restraints on the data, in-
cluding the full BTEC corpus and proprietary data.

In this evaluation, we took part in two data tracks:
supplied data+tools and the C-STAR track.

In the first track, we used our in-house part-of-speech
tagging tool to make a morphological analysis of the sup-
plied data. In the second track, we used the BTEC corpus;
but, for Chinese to English translation, we used only the
BTEC1 data. For Japanese to English translation we used
the BTEC1-BETC4 data.

As described in the previous sections, we used the
phrase-based statistical machine translation for Chinese-
to-English translation and word-based SMT for Japanese-
to-English translation. We trained the phrase-based trans-
lation model by carrying out bi-directional alignment first
and then extracted the phrase translation pairs. The phrase
translation probability was calculated by counting the phrase
pair co-occurrences. Additional models used in the phrase-
based approach consist of N-gram language models, dis-
tortion models and lexicon models.

For training the word-based pseudo-lattice translation
models, we used GIZA++ to train an IBM Model1 and
Model4. The IBM Model1 is used in the first pass of
pseudo-lattice decoding and IBM Model4 used in the A*
search. In addition, some models such as language mod-
els, jump size models, and target length models are inte-

grated with the IBM Model4 log-linearly.
Some statistical properties of the experimental data

and models are shown in Table 1, where language pair in-
dicates Chinese to English translation (C/E) and Japanese
to English translation (J/E). “Data size” shows the sen-
tence numbers in the training pairs. “t-table” shows the
size of source and target pairs in the translation model.
Phrase-based and word-based translation models were used
for Chinese-to-English and Japanese-to-English transla-
tion respectively. “Ngram” shows the number of conse-
quent words in English language model, extracted from
the training data. “perplexity” shows the source language
model’s perplexity in the test set and target language model’s
perplexity in the development data.

4.1. Evaluation results of development data and test
data

Shown in table 2 and 3 are the results of development
data and test data, respectively. “direct N-best” and “pseudo-
lattice” mean that the speech translation are made by a
direct N-best translation approach or pseudo-lattice trans-
lation approach. The development data results are of de-
velopment set2, IWSLT2004, containing 500 sentences
while the test data contain 506 sentences. For the Chinese
ASR translation task, the organizer provides three sets of
ASR output. The translations of ASR output presented in
table 2 were made using the third set, the word accuracy
ratio from 87.3%, single-best , to 94.5%, N-best.

After analyzing the experimental results, we can make
the following conclusions:

• Undoubtedly, the translations in the C-star track are
better than those of the supplied data track ,regard-
less of C/E or J/E, because more training data are
used.

• Comparing the translation results of manual tran-
scription, N-best, pseudo-lattice, and single-best,
we found that ASR word error worsen the trans-
lations greatly because the single-best’s results are
much worse than the plain text’s. However, using
N-best hypotheses can counteract ASR word er-
rors. N-best hypothesis translation improves single-
best translation.

• In most cases, N-best translations are better than
the single-best translations. The improvement by
N-best translations is significant for C-star track.

• There are some inconsistence to the above analysis.
The NIST score of manual transcription in the J/E
supplied track is worse than the single-best’s. We
guess that this is because our log-linear model was
optimized on the BLEU score, therefore, the NIST
score was not improved.



Table 1: Properties of experimental data and models
language pair data track data size t-table Ngram perplexity

testset(source language) dev.data(target language)

C/E supplied+tools 20,000 1.8M 97K 65.4 53.8
C-star 172,170 5.0M 961K 69.3 52.2

J/E supplied+tools 20,000 64K 55K 54.9 53.7
C-star 463,365 506K 354K 22.5 31.6

Table 2: Translation results for development set2 (IWSLT2004)
translation pair data track translation type BLEU NIST WER PER METEOR

C/E supplied+tools manual transcription 0.409 8.37 0.537 0.433 0.634
direct N-best 0.374 7.29 0.563 0.473 0.576
single-best 0.370 7.47 0.579 0.481 0.578

C-star manual transcription 0.548 9.34 0.428 0.350 0.70
direct N-best 0.508 7.71 0.463 0.408 0.637
single-best 0.474 7.88 0.502 0.428 0.625

J/E supplied+tools manual transcription 0.433 5.06 0.509 0.470 0.564
pseudo-lattice 0.430 4.70 0.514 0.476 0.557

single-best 0.428 4.85 0.517 0.477 0.556
C-star manual transcription 0.623 9.16 0.351 0.306 0.737

pseudo-lattice 0.607 9.06 0.372 0.321 0.719
single-best 0.596 9.02 0.377 0.328 0.716

Table 3: Translation results for test data (IWSLT2005)
translation pair data track translation type BLEU NIST WER PER METEOR GTM

C/E supplied+tools manual transcription 0.305 7.20 0.518 0.422 0.573 0.471
direct N-best 0.267 6.19 0.645 0.546 0.506 0.421
single-best 0.251 5.93 0.683 0.581 0.479 0.395

C-star manual transcription 0.421 8.17 0.518 0.422 0.642 0.547
direct N-best 0.375 6.80 0.561 0.486 0.560 0.493
single-best 0.340 6.76 0.619 0.525 0.531 0.461

J/E supplied+tools manual transcription 0.388 4.39 0.563 0.519 0.520 0.431
direct N-best 0.383 4.27 0.574 0.530 0.513 0.422
pseudo-lattice 0.378 4.18 0.578 0.534 0.511 0.420

single-best 0.366 4.50 0.576 0.527 0.508 0.412
C-star manual transcription 0.727 10.94 0.289 0.243 0.80 0.716

direct N-best 0.679 10.04 0.324 0.281 0.760 0.670
pseudo-lattice 0.670 9.86 0.329 0.289 0.763 0.665

single-best 0.646 9.68 0.352 0.304 0.741 0.645



4.2. Comparison of pseudo-lattice translation and di-
rect N-best translation

This section highlights the comparison of pseudo-lattice
translation and direct N-best translation. As shown in Ta-
ble 3, we found in the testset evaluation both direct N-best
translation and pseudo-lattice translation improved on the
single-best translation. The pseudo-lattice translation is
slightly worse than the direct N-best translation. A twin
paper [9] describes the details of our lattice decoding al-
gorithm. We used confidence measure to filter the ASR
hypotheses with low confidence. We used the same de-
coding parameters as the direct N-best translation, such
as beam size and threshold for pruning. And also, we ap-
plied model approximations in lattice decoding. While all
these methods resulted in the improvement of the single-
best translation, they made the lattice translation worse
than the direct N-best translation. However, the pseudo-
lattice translation is much faster. The total running time
for lattice translation is only 20% of that in the direct N-
best translation for the results shown in Table 3. We will
continue to improve pseudo-lattice translation in future
work.

5. Conclusions

Integration of speech recognition and machine translation
is a promising research theme in speech translation. In
addition to our approaches, finite state transducers (FST)
was used in [3]. However, the speech translation per-
formance produced by FST integration structure was re-
ported lower than that by the single-best serial structure.
A latest work in FST integration [10] carried out an Italian-
English speech translation task, where a significant im-
provement was observed for grammartically closed lan-
guages.

Our main purpose in taking part in this year’s evalua-
tion is to verify our work in speech translation, seeking an
effective solution for integrating speech recognition and
machine translation. In this work we proposed two ap-
proach: direct N-best hypothesis translation and pseudo-
lattice translation. Both approaches achieved satisfactory
improvement over single-best translation. In some cases
the improvement can reach 50% of that achieved with
correct manual transcription translation.
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