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Abstract

In this paper we describe and evaluate differ-
ent statistical models for the task of realization
ranking, i.e. the problem of discriminating be-
tween competing surface realizations generated
for a given input semantics. Three models are
trained and tested; an n-gram language model,
a discriminative maximum entropy model using
structural features, and a combination of these
two. Our realization component forms part of a
larger, hybrid MT system.

1 Introduction

The topic of this paper is the use of statisti-
cal models for realization ranking, i.e. the prob-
lem of choosing among multiple paraphrases
that are generated for a given meaning repre-
sentation. The particular system considered in
this project is the generator component of the
Norwegian-to-English machine translation sys-
tem LOGON (Oepen et al., 2004). While the
core of the LOGON system follows a symbolic or
rule-based approach, its deep linguistic analysis
is augmented with statistical methods for am-
biguity management. The focus of this paper
is the isolated subproblem of ranking, and ul-
timately selecting, the final target realizations
produced by the generator component.

Velldal, Oepen, & Flickinger (2004) intro-
duced a notion of symmetric treebanks that can
be used for training statistical models for re-
alization ranking in a manner similar to ear-
lier work on statistical models for parse selec-
tion. The utility of a small initial prototype
of a symmetric treebank was tested by training
models for realization ranking using a limited
feature set. The preliminary results of Velldal
et al. (2004) suggest that a discriminative model
trained on tiny amounts of data can compete
favorably on the realization ranking task when
compared to a n-gram language model trained
on a large text corpus. In the current paper
we train and evaluate rankers on an expanded
treebank and using a richer inventory of feature

types. Three models are described: a tradi-
tional surface-oriented n-gram model, a maxi-
mum entropy model using structural features,
and a combination of these two. We evalu-
ate the different models, as well as the utility
of individual feature types, by comparing ex-
act match accuracy and averaged per-sentence
bleu scores (Papineni, Roukos, Ward, & Zhu,
2002).

The paper is organized as follows. In Sec-
tion 2 we briefly review our notion of symmet-
ric treebanks and the properties of the data set
used for our experiments. Section 3 describes
the three models that we train, including the
feature types of the maximum entropy (Max-
Ent) models. An evaluation of the performance
of the different models is presented in Section 4,
before we go on to discuss the results and sketch
directions for ongoing work in Section 5.

2 Background and Data

The LOGON system has an architecture based
on semantic transfer that uses meaning rep-
resentations based on Minimal Recursion Se-
mantics (MRS; Copestake, Flickinger, Mal-
ouf, Riehemann, & Sag, 1995). Operating
from such input representations, the lexically-
driven chart generator of the Linguistic Knowl-
edge Builder system (lkb; Carroll, Copestake,
Flickinger, & Poznanski, 1999) then generates
target language realizations in accordance with
the LinGO English Resource Grammar (erg;
Flickinger, 2002).1 As is long established, there
are usually many ways to express a given mean-
ing in natural language, some more effective or
natural-sounding than others. Table 1 shows
some examples of alternate outputs when gen-
erating from a single (underspecified) input se-
mantics using the erg: while a linguistic preci-
sion grammar goes a long way towards guaran-

1Both the lkb and erg, as well as large parts
of the LOGON machine translation system itself are
part of the open-source DELPH-IN repository; see
‘http://www.delph-in.net/’ for background.
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remember that dogs must be on a leash .
remember dogs must be on a leash .
on a leash remember that dogs must be .
on a leash remember dogs must be .
a leash remember that dogs must be on .
a leash remember dogs must be on .
dogs remember must be on a leash .

Table 1: Example sets of generator outputs using the
LinGO erg. Unless the input semantics is specified
for aspects of information structure (e.g. requresting
foregrounding of a specific entity), paraphrases will
include all grammatically legitimate topicalizations.
Other sources of generator ambiguity include, for ex-
ample, the optionality of complementizers and rel-
ative pronouns, permutation of (intersective) modi-
fiers, as well as lexical and orthographic alternations.

teeing grammaticality of all realizations (to the
level of providing the so-called that filter on sub-
ject extraction, for example), clearly some out-
puts are far more fluent than others. For the
ambiguous items in the test data that we con-
sider in this paper we get close to 73 realiza-
tions on average, where the maximium is 5712
candidates for a single input MRS (this maxi-
mum, however, is specific to our data set and
could well be larger). The number of per-item
readings is expected to further increase as the
coverage of the MT system as a whole is broad-
ened and as the system is extended to generate
from packed, ambiguous transfer outputs. It is
therefore necessary to have a scalable method
for selecting the final target realizations.

2.1 Symmetric Treebanks

This section briefly describes the data sets that
we use for evaluating the different statistical
rankers and also for training the MaxEnt mod-
els.

In order to select a preferred surface realiza-
tion we want a conditional model that gives us
the probability of a string given its semantics. It
is worth noting that the problem of realization
ranking in many ways can be seen as ‘inversely
similar’ to the problem of parse selection, i.e.
choosing the best analysis for a given string.
Our work on constructing models for realization
draws heavily on the previous work on parse
disambiguation in relation to the HPSG Red-
woods2 treebank, as reported by Oepen et al.
(2002).

2See ‘http://www.delph-in.net/redwoods/’ for
more information about the Redwoods project.

Stochastic models for parse selection are typ-
ically trained on a treebank consisting of strings
paired with their optimal analyses. When train-
ing the discriminative models (described in Sec-
tion 3.2) for realization selection we use a tree-
bank where this optimality relation is taken to
be bidirectional in the sense that the original
string is also treated as an optimal realization of
the corresponding semantic analysis (i.e. ‘mean-
ing’). For each input, the Redwoods treebank
provides a full HPSG analysis that also includes
the semantic component. This means that we
can use the semantics associated with each pre-
ferred analysis to generate all paraphrases for
each item. Velldal et al. (2004) proposed a
notion of symmetric treebanks defined as the
combination of (a) a set of pairings of surface
forms and associated semantics, combined with
(b) the sets of alternative analyses for each sur-
face form and (c) sets of alternate realizations of
the semantics. The preferred or optimal realiza-
tions are automatically labeled by matching the
yields of the generated trees against the original
strings in the parse treebank.

Some core metrics of our experimental ma-
terial are summarized in Table 2: the data
set (dubbed Rondane) is comprised of a little
over one thousand sentences of instructional,
native-English text taken from on-line guides to
tourism in Norway (the application domain of
the LOGON machine translation system). The
raw text, erg parse trees, and hand-selected
MRS meaning representations are part of the
publicly available Redwoods treebank, and we
used the re-generation and alignment technique
sketched above to obtain a symmetric treebank
for our purposes. For our realization ranking
experiments, we excluded the items that had
no or just a single, unambiguous generator out-
put, arriving at a total of 864 〈meaning, surface〉
pairs for training and evaluation. Table 2 also
provides the baseline statistics for guessing the
preferred realization by chance: using the same
measure of exact match accuracy as applied in
Section 4, the random choice baseline for the
Rondane generation treebank is at just above
18%.

3 Models for Realization Ranking

In this section we describe the three different
rankers that we apply for the task of choos-
ing among the target sentences produced by the
generator. The first model that we present is a
traditional n-gram language model. We then
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items words readings baselineAggregate
� φ φ φ

100 ≤ readings 87 20.5 580.8 0.42
50 ≤ readings < 100 61 17.3 73.0 1.44
10 ≤ readings < 50 269 15.1 22.5 5.61
5 < readings < 10 172 11.1 6.9 15.66
1 < readings < 5 275 8.8 2.8 40.9

Total 864 13.0 72.9 18.03

Table 2: Some core metrics for the symmetric treebank data used in our initial experiments, broken down by
degrees of ambiguity in generation. The columns are, from left to right, the subdivision of the data according
to the number of realizations, total number of items scored (excluding items with only one realization),
average string length, and average structural ambiguity. The rightmost column shows a random choice
baseline, i.e. the probability of selecting the preferred realization by chance.

go on to look at the two maximum entropy or
log-linear models that we train using structural
features from the symmetric treebank described
in the previous section.

3.1 A Language Model Ranker

The first statistical model that we apply for
ranking the generator outputs is an n-gram
language model.3 This approach is in many
ways similar to those presented by, among oth-
ers, Langkilde & Knight (1998) and White
(2004) and quite generally still appears predom-
inant in the realization ranking literature. The
model is trained on an unannotated version of
the British National Corpus (BNC), contain-
ing roughly 100 million words. As the realiza-
tions in our symmetric treebank also include
punctuations, these are also treated as sepa-
rate tokens by the language model (in addi-
tion to sentence boundary markers). We then
rank the realizations by computing their nega-
tive log-probabilities with respect to the model.
In other words, the score of a string with k to-
kens, score(wk

1 ), is computed as − ln pn(wk
1 ) =

−∑k
i=1 ln pn(wi|wi−n, . . . , wi−1). After training

and testing several language models for vary-
ing values of n, we ended up using an 4-gram
model (backing-off for unobserved n-grams) for
the results reported here.

3.2 A Maximum Entropy Ranker

Log-linear models provide a very flexible frame-
work that has been widely used for a range of
tasks in NLP, including parse selection (see e.g.
Johnson, Geman, Canon, Chi, & Riezler, 1999;
Malouf & Noord, 2004) and reranking for ma-
chine translation (see e.g. Och et al., 2004). A

3When training the language models we used the
freely available CMU-SLM Toolkit.

model is specified by a set of real-valued fea-
ture functions that describe properties of the
data, and an associated set of learned weights
that determine the contribution of each feature.
Given a set of d such features, each realization
r is represented as a feature vector f(r) ∈ �d,
and a vector of weights λ ∈ �d is then fitted to
optimize the likelihood of the training data. A
conditional log-linear model for the probability
of a realization r given the semantics s, has the
general parametric form

pλ(r|s) =
1

Zλ(s)
q(r|s) exp

(
d∑

i=1

λifi(r)

)
(1)

where Zλ is a normalization term defined as

(2) Zλ(s) =
∑

r′∈Y (s)

q(r′|s) exp

(
d∑

i=1

λifi(r′)

)

and Y (s) gives the set of all possible realizations
of s. The so-called reference or default distri-
bution q is often only implicit since in maxi-
mum entropy estimation this is just the con-
stant function 1

|Y (s)| (for a given s). One can,
however, also replace this uniform distribution
by some other reference distribution to incor-
porate prior knowledge in the model. This ap-
proach is also known as maximum entropy /
minimum divergence (MEMD) modeling, and
we will return to this more general framework
below.

The estimation4 of the λ-parameters seek to
maximize the (log of) a penalized likelihood

4We use the estimate open-source package (Mal-
ouf, 2002) for training, using its limited-memory variable
metric as the optimization method.
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subjh

hspec

det the le

the

sing noun

n intr le

dog

third sg fin verb

v unerg le

barks

Figure 1: Sample HPSG derivation tree for the input
the dog barks. Phrasal nodes are labeled with iden-
tifiers of grammar rules, and (pre-terminal) lexical
nodes with class names for types of lexical entries.

function as in

(3) λ̂ = arg max
λ

log L(λ) −
∑d

i=1 λ2
i

2σ2

where L(λ) is the ‘conditionalized’ likelihood
of the training data (as described by John-
son et al., 1999), computed as L(λ) =∏N

i=1 pλ(ri|si). The second term of the likeli-
hood function in Equation (3) is a penalty term
that is commonly used for reducing the ten-
dency of log-linear models to over-fit, especially
when training on sparse data using many fea-
tures (Chen & Rosenfeld, 1999; Johnson et al.,
1999; Malouf & Noord, 2004). More specifi-
cally it defines a zero-mean Gaussian prior on
the feature weights which effectively leads to
less extreme values. Note that, maximizing
the likelihood of the training data is equiva-
lent to minimizing the relative entropy (aka KL-
diveregence) between the model and the ref-
erence distribution D(pλ||q) on the one hand,
and between the empirical distribution and the
model D(p̃ ||pλ) on the other.

Given a MaxEnt model pλ, the scores used for
ranking the candidate realizations can be com-
puted simply as score(r) =

∑
i λifi(r) since we

are only interested in the rank order.

3.3 Maximum Entropy Features
The first MaxEnt model that we trained uses
structural features defined over HPSG deriva-
tion trees as summarized in Table 3. For the
purpose of parse selection, Toutanova, Man-
ning, Shieber, Flickinger, & Oepen (2002) and
Toutanova & Manning (2002) train a discrimi-
native log-linear model on the Redwoods parse
treebank, using features defined over derivation
trees with non-terminals representing the con-
struction types and lexical types of the HPSG

# sample features
1 〈0 subjh hspec third sg fin verb〉
1 〈1 � subjh hspec third sg fin verb〉
1 〈0 hspec det the le sing noun〉
1 〈1 subjh hspec det the le sing noun〉
1 〈2 � subjh hspec det the le sing noun〉
2 〈0 subjh third sg fin verb〉
2 〈0 hspec sing noun〉
3 〈1 n intr le dog〉
3 〈2 det the le n intr le dog〉
3 〈3 � det the le n intr le dog〉
4 〈1 n intr le〉
4 〈2 det the le n intr le〉
4 〈3 � det the le n intr le〉

Table 3: Example structural features extracted from
the derivation tree in Figure 1 The first column num-
bers the feature template corresponding to each ex-
ample; in the examples, the first integer value is a pa-
rameter to feature templates, i.e. the depth of grand-
parenting (types 1 and 2) or n-gram size (types 3 and
4). The special symbols � and � denote the root of
the tree and left periphery of the yield, respectively.

grammar. The basic feature set of our Max-
Ent realization ranker is defined in the same
way (corresponding to the PCFG-S model of
Toutanova & Manning, 2002), each feature cap-
turing a sub-tree from the derivation limited to
depth one. Table 3 shows example features in
our MaxEnt models, where the feature template
# 1 corresponds to local derivation sub-trees.
To reduce the effects of data sparseness, fea-
ture type # 2 in Table 3 provides a back-off
to derivation sub-trees, where the sequence of
daughters is reduced to just the head daugh-
ter. Conversely, to facilitate sampling of larger
contexts than just sub-trees of depth one, fea-
ture template # 1 allows optional grandparent-
ing, including the upwards chain of dominating
nodes in some features. In our experiments, we
found that grandparenting of up to two domi-
nating nodes gave the best balance of enlarged
context vs. data sparseness.

In addition to these dominance-oriented fea-
tures taken from the derivation trees of each re-
alization, our models also include more surface-
oriented features, viz. n-grams of lexical types
with or without lexicalization. Feature type
# 3 in Table 3 defines n-grams of variable size,
where (in a loose analogy to part of speech tag-
ging) sequences of lexical types capture syn-
tactic category assignments. Feature templates
# 3 and # 4 only differ with regard to lexical-
ization, as the former includes the surface token
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associated with the rightmost element of each
n-gram (loosely corresponding to the emission
probabilities in an HMM tagger). Unless other-
wise noted, we used a maximum n-gram size of
two in the experiments reported here, again due
to its empirically determined best overall per-
formance. When instantiating all feature tem-
plates as described above our models contain
close to 65000 features.

3.4 A Combined Model
The second MaxEnt model is a combination of
the two models described in Section 3.1 and 3.2
above; in addition to the set of structural fea-
ture types it includes as a separate feature the
sentence scores computed by the n-gram lan-
guage model. In other words, the value of the
d + 1’th feature is the log-probability of the
string as given by the n-gram model pn, i.e.
fd+1(r) = ln pn(y(r)), where y(r) is the yield
of r and n = 4 as before.

Johnson & Riezler (2000) show an interesting
equivalence between using log-probabilities as
features and using a geometric mixture of the
same probabilities for the default distribution q
of Equation 1 (where the λ-parameters of the
features would correspond to their weights in
the mixture). This means that a special case
of the simple combined model we present here
would be a MEMD model where the uniform
distribution q is replaced by the language model
pn. If λd+1 = 1 then exp(fd+1λd+1) = pn and
we would effectively have a MEMD model as
described above with q = pn.

Both of the log-linear models described in this
section were trained and tested through 10-fold
cross validation on the Rondane data set sum-
marized above, and we empirically determined
a suitable value for σ2 (the variance parameter
in the prior of Equation 3) which is here set to
10000 and 1000 for the models with and without
the LM-feature respectively.

4 Evaluation

We here present an evaluation of the different
models based on exact match accuracy and the
bleu string similarity metric (Papineni et al.,
2002). The exact match measure simply counts
the number of times that the model assigns
the highest probability to a string that exactly
matches the corresponding ‘gold’ or reference
sentence (i.e. a sentence that is marked as pre-
ferred in the symmetric treebank). This score is
discounted appropriately if several realizations
are given the top rank by the model. Although

the simple measure of exact match accuracy of-
fers a very intuitive and transparent view, it is
also in some respects too harsh as an evalua-
tion measure in our setting. Since often more
than one of the candidate realizations will be
a suitable rendering of the input semantics, it
would seem unfair (and potentially even unin-
formative) to only give credit in the case of an
exact match, on an all or nothing basis. In addi-
tion to the exact match scores we therefore also
include the bleu metric, which is here used as
a string similarity measure.

The well-established bleu measure computes
a weighted average of the n-gram precision of
the selected realization with respect to the refer-
ence. The precision is computed for all 1 ≤ n ≤
N , with N = 4, and the final score has a con-
stant range in [0, 1]. Note that we here report
averaged sentence-level bleu scores. Further-
more, the particular implementation of bleu
in use in the LOGON system contains modifi-
cations that are similar in spirit to those found
in neva as defined by Forsbom (2003). In or-
der to make the measure well defined for cases
where the length c of the candidate sentence is
less than N or when there are no matching n-
grams of size N , we set N to be the highest
number n ≤ Nmax for which a match exists (if
any), where Nmax = min(c, 4).

4.1 Experimental Results

The baseline accuracy that would be expected if
we were to randomly pick a candidate sentence
for each item is 18.03%. All of the three models
we have tested outperform this random choice
baseline by a good margin with respect to ex-
act match accuracy; the n-gram model achieves
48.46%, the MaxEnt model 61.58%, while the
combined model performs better than any of its
component models and checks out with an ex-
act match accuracy of 65.63%. We see the same
relative ordering with respect to the similarity-
based metric: the structural MaxEnt model out-
performs the surface-oriented language model,
while the combined model in turn outperforms
both of these. Figures 2 and 3 show the accu-
racy and bleu scores, respectively, where the
data items are aggregated into bins according
to the level of ambiguity, i.e. number of para-
phrases. In all aggregates we find that the rel-
ative order of rankers is the same for the two
performance measures, although bleu appears
to be somewhat more forgiving with the n-gram
model. As expected we also see a degradation
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Figure 2: Exact match accuracy scores for the differ-
ent models binned with respect to number of distinct
realizations.

of performance as the number of realizations in-
creases.

The good performance of the ‘separate’ Max-
Ent model as compared to the language model
seems to give encouraging evidence for the util-
ity of including structural, syntactic features
in a model for stochastic realization ranking—
especially when considering that the n-gram
model is trained on the entire BNC, while the
basic MaxEnt model is trained and tested by
ten-fold cross-validation on the still relatively
limited set of 864 paraphrased items in the Ron-
dane treebank. However, the relative perfor-
mance of these models probably also says a lot
about the importance of using training data
that is attuned to the domain of application.
With respect to the language model, roughly
15% of the word forms in the data set are out-
of-vocabulary items and the vast majority of
these are Norwegian proper names (often de-
noting hiking destinations and such). We have
yet to try applying the language model using a
similar cross-validation scheme for interpolating
additional n-gram models trained on the Ron-
dane treebank. Analogously, in order to test
the cross-domain performance of the structural
models, we also plan to construct paraphrased
treebanks for other parts of the Redwoods data.

When compared to our initial experiments on
smaller data sets (Velldal et al., 2004), we find
that the MaxEnt models, using structural fea-
tures, clearly benefit from increased amounts of
training data, even though the degree of ambi-
guity (i.e. number of paraphrases) per item has
also increased. The perfomance of the n-gram
model seems to degrade more sharply with re-
spect to the number of per-item paraphrases,

 0.7
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 1
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100-5712
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Figure 3: Averaged sentence-level bleu scores for
the different models binned with respect to number
of distinct realizations.

and the general tendency reported by Velldal
et al. (2004) is amplified: discriminative real-
ization ranking with access to structural proper-
ties, when trained on small amounts of domain-
specific data, appears to outperform the tra-
ditional method of selecting among competing
strings purely by means of n-gram language
models.

5 Summary and Further Directions

For the relatively coherent LOGON domain at
least, a small training set of some 900 automat-
ically ‘annotated’ paraphrases combined with a
discriminative model adapted from earlier parse
selection work improves substantially over a lan-
guage model trained on all of the BNC. Our
results suggest that this use of domain-specific
treebanks—and the underlying assumption of
relative ‘naturalness’ of the original, corpus-
attested realizations—provide a good handle
on ranking generator outputs, and that struc-
tural, linguistic information as is available to
the log-linear model is of central importance for
this task. Table 4 summarizes the results ob-
tained both with the models developed in this
paper and the models used in Velldal et al.
(2004). We see that adding additional struc-
tural features and n-grams over fine-grained
pre-terminal types enabled a substantial im-
provement in the performance of the MaxEnt
ranker.

When we highlighted the similarities to parse
selection, there were also some important dif-
ferences that were glossed over. In relation to
parsing, distinct system outputs typically have
distinct semantics and it seems more reasonable
to only count one or a few as correct and the
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Figure 4: Exact match accuracy scores for different
configurations of MaxEnt features, viz. (a) the basic
MaxEnt model used by Velldal et al. (2004) (‘Basic’);
(b) adding n-gram features defined over lexical types
in the derivation trees (‘LTB’); (c) adding grand-
parenting features (‘GrandP.’); (d) adding the lan-
guage model feature (‘LM-feature’); and, finally, (e)
the combined model using all feature types (‘Com-
bined’). The data items are binned with respect to
number of distinct realizations.

others as plain wrong. In realization ranking, on
the other hand, it is perhaps more meaningful to
think of a graded continuum of more or less nat-
ural verbalizations (given an input semantics).
All outputs of the lkb realizer are semantically
equivalent and guaranteed to be well-formed
with respect to the underlying grammar. This
means that the kind of properties we aim at cap-
turing with the discriminative model are soft
constraints that govern the degree of ‘correct-
ness’ among competing paraphrases. Osborne
(2000) and Malouf & Noord (2004) describe an
approach to parse disambiguation using maxi-
mum entropy models where the empirical distri-
bution that defines the constraints for the model
are not based on frequency counts from a cor-
pus but rather some measure of similarity to-
wards the reference. Defining such a preference
weighting of the candidate paraphrases (e.g. by
using bleu or other string-similarity measures
typically used for evaluation) prior to training
might be a well-suited approach also for build-
ing models for realization ranking. In initial
experiments, however, we were unable to im-
prove ranker performance over the results re-
ported here when training our MaxEnt model
against a graded distribution, although we have
not yet obtained conclusive results for this set-

model configuration exact BLEU

language model of (Velldal et al., 2004) 48.46 0.878

basic model of (Velldal et al., 2004) 51.36 0.897

basic plus lexical type bi-grams 58.05 0.898

basic blus grandparenting 59.83 0.906

basic plus both of the above 61.58 0.903

basic plus language model 60.71 0.915

basic plus all of the above 65.63 0.920

Table 4: Performance summaries of best-performing
realization rankers in various configurations, when
compared to the original set-up of Velldal et al.
(2004). While the exact match accuracy yields a
broader spread of results, using bleu as a string
similarity measure confirms the overall trend of
increased ranker performance when adding more
structural features.

up.
More practically, the way our realization

rankers actually get deployed in the LOGON sys-
tem is by means of selective unpacking from
the packed generator forest: Carroll & Oepen
(2005) present the unpacking procedure in full
detail, but quite obviously there is a trade-
off between the ability to prune competing
but dis-preferred realizations early, on the one
hand, and improved realization ranking accu-
racy obtained from feature templates that take
into account structural properties of larger con-
stituents, on the other hand.
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