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Abstract

One-stage decoding as an integration of speech
recognition and linguistic analysis into one
probabilistic process is an interesting trend in
speech research. In this paper, we present a
simple one-stage decoding scheme that can be
realised without the implementation of a spe-
cialized decoder, nor the use of complex lan-
guage models. Instead, we reduce an HMM-
based semantic analysis to the problem of de-
riving annotated versions of the conventional
language model, while the acoustic model re-
mains unchanged. We present experiments
with the ATIS corpus (Price, 1990) in which
the performance of the one-stage method is
shown to be comparable with the traditional
two-stage approach, while requiring a signifi-
cantly smaller increase in language model size.

1 Introduction

In a spoken dialogue system, speech recognition and lin-
guistic analysis play a decisive role for the overall per-
formance of the system. Traditionally, word hypothe-
ses produced by the automatic speech recognition (ASR)
component are fed into a separate natural language under-
standing (NLU) module for deriving a semantic meaning
representation. These semantic representations are the
system’s understanding of the user’s intentions. Based on
this knowledge the dialogue manager has to decide on the
system reaction. Because speech recognition is a proba-
bilistic pattern matching problem that ususally does not
generate one single possible result, hard decisions taken
after the speech recognition process could cause signifi-
cant loss of information that could be important for the
parsing and other subsequent processing steps and may
thus lead to avoidable system failures. One common
way of avoiding this problem is the use of N-best lists

or word lattices as output representations, but these may
require more complex NLU processing and/or increased
processing times. In this paper, we follow an alternative
approach: integrating flat HMM-based semantic analy-
sis with the speech recognition process, resulting in a
one-stage recognition system that avoids hard decisions
between ASR and NLU. The resulting system produces
word hypotheses where each word is annotated with a
semantic label from which a frame-based semantic repre-
sentation may easily be constructed. Fig. 1 sketches the
individual processes involved in our integrative approach.
The shaded portions in the figure indicate the models and
processing steps that will be modified by versions using
semantic labels. This will lead to an overall architecture,
where a separate semantic decoding step (5) becomes dis-
pensable.

One contribution of this work is to show that compared
to other one-stage approaches (Thomae et al., 2003) such
an integrated recognition system does not require a spe-
cialized decoder or complex language model support. In-
stead, basic bi-gram language models may be used.

We achieve the integration by “reducing” the NLU
part to language modelling whilst enriching the lexicon
and language model with semantic information. Conven-
tional basic language modelling techniques are capable of
representing this information. We redefine the units used
in the language model: instead of using “plain” words,
these are annotated with additional information. Such an
additional information may consist of semantic labels and
context information. For each of these annotated variants
of a word, the phonetic transcription of the “plain” word
is used. Consequently, the ASR cannot decide which
variant to choose on the basis of the acoustic model. No
retraining of the acoustic model is necessary. The speech
recogniser produces word hypotheses enriched with se-
mantic labels.

The remainder of this paper is structured as follows:
In the next section we give a brief overview of the Cam-
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Figure 1: Principal knowledge sources and models of
speech recognition and semantic analysis. Shaded parts
constitute the changes when using a one-stage approach.
The numbers indicate the following computational steps:
(1) acoustic model parameter estimation, (2) language
modelling, (3) Viterbi acoustic decoding, (4) semantic
model parameter estimation, (5) Viterbi semantic decod-
ing.

bridge HTK software we used for our experiments with
the ATIS corpus. In Section 3 we outline the HMM-based
parsing method. The basic approach for adding infor-
mation into the speech recogniser language model is de-
scribed in Section 4. In Section 5 we discuss our experi-
ments and present speech recognition results. Finally, we
conclude by pointing out further possible improvements.

2 Acoustic Modelling and Speech
Recognition Using HTK

Speech recognition may be formulated as an optimisation
problem: Given a sequence of observations O consist-
ing of acoustic feature vectors, determine the sequence
of words W , such that it maximizes the conditional prob-
ability P (W |O). Bayes’ rule is used to replace this con-
ditional probability which is not directly computable by
the product of two components: P (O|W ), the acoustic
model, and P (W ), the language model.

[W ]opt = argmax
W

{P (W )P (O|W )} (1)

The Cambridge Hidden Markov Model Toolkit
(HTK) (Young et al., 2004) can be used to build robust
speaker-independent speech recognition systems. The
tied acoustic model parameters are estimated by the
forward-backward algorithm.

The HTK Viterbi decoder can be used together with a
probabilistic word network that may be computed from
a finite state grammar or the bi-gram statistics of a text
corpus. The decoder’s token passing algorithm is able

reference word : case frame or concept identifier
case frame: set of cases related to a concept
case: attribute of a concept
case marker: surface structure indicator of a case
case system: complete set of cases of the application

Figure 2: Semantic case grammar formalism.

to produce word hypotheses lattices or N-best lists of
recognition results. Internally this word network is com-
bined with a phonetic transcription dictionary to produce
an expanded network of phoneme states. Usually, one
phoneme or triphone is represented by five states.

For our experiments with the ATIS corpus, the acoustic
model is constructed in conventional way. We use 4500
utterances to train a triphone recogniser with 8 Gaussian
mixtures. A triphone count of 5929 physical triphones
expand to 27619 logical ones. The acoustic model is used
for both the two-stage and the one-stage experiments.

3 HMM-Based Semantic Case Frame
Analysis

In the domain of spoken language information retrieval,
spontaneous effects in speech are very important (Minker,
1999). These include false starts, repetitions and ill-
formed utterances. Thus it would be improvident to base
the semantic extraction exclusively on a syntactic anal-
ysis of the input utterance. Parsing failures due to un-
grammatical syntactic constructs may be reduced if those
phrases containing important semantic information could
be extracted whilst ignoring the non-essential or redun-
dant parts of the utterance. Restarts and repeats fre-
quently occur between the phrases. Poorly syntactic con-
structs often consist of well-formed phrases which are se-
mantically meaningful.

One approach to extract semantic information is based
on case frames. The original concept of a case frame
as described by Fillmore (Fillmore, 1968) is based on a
set of universally applicable cases or case values. They
express the relationship between a verb and its nouns.
Bruce (Bruce, 1975) extended the Fillmore theory to any
concept-based system and defined an appropriate seman-
tic grammar whose formalism is given in Fig. 2.

In the example query

<you> <get> could you give me a ticket price
on [uh] [throat clear] a flight first class
from San Francisco to Dallas please

a typical semantic case grammar would instantiate the
following terminals:

• price: this reference word identifies the concept air-
fare (other concepts may be: book, flight, ...)



• from: case marker of the case from-city correspond-
ing to the departure city San Francisco

• to: case marker of the case to-city corresponding to
the arrival city Dallas

• class: case marker of the case flight-class corre-
sponding to first

• case system: from, to, class, ...

The parsing process based on a semantic case grammar
typically considers less than 50% of the example query
to be semantically meaningful. The hesitations and false
starts are ignored. The approach therefore appears well
suited for natural language understanding components
where the need for semantic guidance in parsing is es-
pecially relevant.

Case frame analysis may be used in a rule-based case
grammar. Here, we apply HMM-based modelling in-
stead (Pieraccini et al., 1992; Minker et al., 1999). In the
frame-based representation, the semantic labelling does
not consider all the words of the utterance, but only those
related to the concept and its cases. However, in order
to estimate the model parameters, each word of the ut-
terance must have a corresponding semantic label. Thus,
the additional label (null) is assigned to those words not
used by the case frame analyzer for the specific applica-
tion. A semantic sequence consists of the basic labels
<concept>, (m:case), (v:case) and (null) correspond-
ing respectively to the reference words, case markers, val-
ues and irrelevant words.

Relative occurrences of model states and observations
are used to establish the Markov Model, whose topology
needs to be fixed prior to training and decoding. Seman-
tic labels are defined as the states sj . All states such as
the examples (v:at-city), (null) and <ground-service>

shown can follow each other; thus the model is ergodic.
In direct analogy to the speech recognition problem

(equation 1), the decoding consists of maximizing the
conditional probability P (S|W ) of some state sequence
S given the observation sequence W :

[S]opt = argmax
S

{P (S)P (W |S)} (2)

Given the dimensionality of the sequence W , the ex-
act computation of the likelihood P (W |S) is intractable.
Again, bi-grams are a common approximation in order
to robustly estimate the Markov Model parameters, the
state transitions probabilities P (sj |si) and the observa-
tion symbol probability distribution P (wm|sj) in state j.

In contrast to speech recognition, the computation of
the model parameters can be achieved through maximum
likelihood estimation, i.e. by counting event occurrences.
Usually a back-off and discounting strategy is applied in
order to improve robustness in the face of unseen events.

An HMM-based parsing module may be conceived as a
probabilistic finite state transducer that translates a se-
quence of words into a sequence of semantic labels. The
semantic labels denote word’s function in the semantic
representation.

Although the flat semantic model has known limita-
tions with respect to the representation of long-term de-
pendencies, for practical applications it is often sufficient.
It has been shown that several methods, such as contex-
tual observations and garbage models, exist that enhance
the performance of HMM-based stochastic parsing mod-
els (Beuschel et al., 2004).

4 Adding Information to the Language
Model

As mentioned above, the language model P (W ) repre-
sents the probability of a state sequence. With the bi-
gram approximation P (W ) ≈ P (wi|wi−1) this proba-
bility becomes a transition probability between words in
a word network.

By adding information to the language model (cf.
shaded parts of Fig. 1) we modify the word network in
a way that instead of “plain” words as nodes the network
should now contain “annotated” variants of these original
words. The annotation then encodes some additional in-
formation that is relevant to the further processing in the
dialogue system, but does not affect the pronunciation of
the word. By introducing such labelled word variants, it
is possible to encode some additional relations that exist
between the labels rather than between the words.

Consider the following utterance and a corresponding
labelling of each word with additional information:

Show-(null)
me-(null)

ground-<ground-service>
transportation-<ground-service>

for-(null)
Dallas-(v:at-city)

The word network computed from utterances of the latter
form instead of plain texts will represent the fact that af-
ter a word labelled as (null), a city name labelled as (v:at-
city) is much more likely than labelling as (v:from-city)
or (v:to-city). In order to compute the modified version of
the network it is only necessary to replace the words by
their labelled variants in the training corpus and to com-
pute the bi-gram statistics from this modified corpus (cf.
step (2) in Fig. 1).

For expanding the word network into a network of
phoneme states as required by the speech recognition, it is
necessary to modify the phonetic transcription dictionary
accordingly: for each labelled variant of a word appear-
ing in the labelled training texts, the respective unlabelled



word entry is copied. The Viterbi decoder will now out-
put sequences of annotated words (step (3)).

The language model may not only be enriched by se-
mantic labels. Other information, such as the context of
the word may also be used. A language model labelled
with a context that consists of one word on the left is
essentially a tri-gram model. There is a trade-off be-
tween what the network can express and its size. Using
too many different labels for each word in the network
may quickly result in word networks impractical for real-
time use. For our experiments within the ATIS domain,

Table 1: Word network sizes for different labelling tech-
niques. “Expanded” refers to the phoneme state network.
t denotes estimated per utterance processing time.

Method Words Expanded t

Nodes Arcs Nodes Arcs [s]

ASR 465 2,939 5,985 15,482 14.1
ASR/Cl 709 4,382 8,775 21,360 67.8
ASR/Co 3,603 14,126 46,043 84,464 15.9
ASR/CC 6,632 18,117 83,207 115,703 117.0

ASR+ 1,243 7,108 16,210 38,314 13.4
ASR+Co 2,269 10,272 29,535 59,209 20.8
ASR+N 1,556 7,966 19,516 42,996 14.7

Table 1 summarises the word network sizes for differ-
ent labelling methods. Here, “ASR” refers to the orig-
inal base-line unlabelled language model. “ASR/Cl” is
a simple class-based language model with manually de-
fined classes. A left context of one word was used in
“ASR/Co”, and combined in with classes in “ASR/CC”.
These labelled versions may be used in the two-stage ap-
proach to improve the speech recognition results.

“ASR+”, “ASR+Co”, “ASR+N” refer to semantically
labelled language models. “ASR+” is directly trained on
the semantically labelled training texts. “ASR+Co” fur-
thermore includes a left context of one semantic label,
whereas “ASR+N” includes sub-label numbering.

As can be seen from the numbers, word classes as well
as the semantic methods only incur a modest increase in
network size. The word-based methods, however, signifi-
cantly inflate the model. Although we have not systemat-
ically recorded the time necessary for recognizing the test
set with these networks, it is fair to say the time escalates
from minutes to hours.

The last column in Table 1 denotes the estimated aver-
age per-utterance processing time in seconds. The num-
bers were obtained on a Pentium 4 with 2,6 GHz speed
and 1 GB of RAM running Linux.

5 Speech Recognition Experiments

For our experiments with the ATIS corpus, the stochastic
parsing model is computed from 1500 utterances, manu-
ally annotated in a bootstrapping process. We use 13 se-
mantic word classes (e.g. /weekday/, /number/, /month/,
/cityname/). The semantic representation consists of 70
different labels. Splitting sequences of identical labels
into numbered sub-labels results in 174 numbered labels.
The semantic representation focuses on the identification
of key slots, such as origin, destination and stop over
locations, as well as airline names and flight numbers.
Word sequences containing temporal information such as
constraints on the departure or arrival time are not anal-
ysed in detail. Instead, all these words are marked with
(v:arrive-time) or (v:depart-time), respectively. The test
corpus consists of 418 utterances which were manually
annotated with semantic labels.

For the two-stage approach different word-based lan-
guage models (plain, class-based, context, combined)
were used (cf. section 4). An N-best decoding was per-
formed and 20 hypotheses were subsequently labelled by
the stand-alone stochastic parser. After that, the result
with the maximum combined probability value was cho-
sen. In the one-stage approach, two refinements (context
and numbering) were applied to the basic semantic lan-
guage model.

Table 2: Word correctness results.

Method Correct Accuracy Sentence
[%] [%] [%]

ASR 82.66 67.20 20.56
ASR/Co 85.53 72.74 26.61
ASR/Cl 84.33 70.96 24.60
ASR/CC 85.43 72.68 27.42

ASR+ 85.04 72.03 25.60
ASR+Co 85.02 71.90 25.60
ASR+N 85.13 72.16 25.81

Tables 2 and 3 present the results of these experi-
ments. They are based on word recognition and con-
cept recognition performance, respectively. The columns
titled “Correct” and “Accuracy” refer to word correct
rate and word accuracy, as well as to their concept-level
equivalents. The “Sentence” column lists the percentage
of completely correctly decoded sentences. For the two-
stage approach, the numbers in Table 2 denote the perfor-
mance of the speech recognition system alone (step (3)
in Fig. 1). For the one-stage approach, the semantic la-
bels were removed after decoding in order to obtain the
plain word sequences. It can be seen that the word-based
recognition benefits both from word-based additions to
the language model, as well as from semantic labels in



about the same rate.

Table 3: Concept correctness results.

Method Correct Accuracy Sentence
[%] [%] [%]

NLU 96.97 96.97 85.69

ASR 76.67 60.73 18.18
ASR/Co 78.62 65.92 24.80
ASR/Cl 78.69 66.97 24.60
ASR/CC 78.02 63.77 13.31

ASR+ 77.72 64.80 21.57
ASR+Co 77.74 64.69 21.77
ASR+N 77.44 64.58 22.18

Table 3 summarizes the concept-level results. Here,
the semantic labels are also compared against the refer-
ence. Numbers in sub-labels are ignored, however. The
“NLU” row denotes the performance on perfectly recog-
nized data, i.e. on the training transcriptions. One-stage
integrated recognition produces competitive recognition
rates when compared to the two-stage approach. Even
though in the two-stage approach, each stage’s represen-
tation can be fine-tuned separately.

It seems interesting to note a subtle difference be-
tween the decoding procedures of the two-stage and
the one-stage architectures. In a stand-alone stochas-
tic parser, Viterbi decoding is used for word-to-label
correspondences. The probability of a transition from
semantic state si to sj is thus defined as the prod-
uct P (wj |sj)P (sj |si), where P (wj |sj) is the probabil-
ity of observing wj in state sj . In contrast, if a la-
belled language model is used the transition probability is
P (wj |wi), where wi and wj are pairs of the actual words
and their associated labels, so the surface form of the last
word influences the transition as well (not only its label).

6 Conclusions and Future Work

It can be shown that a flat HMM-based semantic analy-
sis does not require a separate decoding stage. Instead it
seems possible to use the speech recogniser’s language
model to represent the semantic state model, without
compromising recognition in terms of word or slot error
rate.

For a stand-alone speech recognition component, it
seems advantageous to use a class-based or context-based
language model, since it improves the word recognition
score. For the stochastic parsing, numbered sub-labels
provide best results. With N-best decoding, the stochas-
tic parser can be used to select the best overall hypothesis.

A number of improvements and extensions may be
considered for the different processing stages. Firstly, in-
stead of representing compound airport and city names

such as “New York City” as word sequences, they could
be entered in the dictionary as single words, which should
avoid certain recognition errors. In addition, an equiva-
lent of a class-based language model should be defined
for semantically annotated language models. Also, con-
textual observations, i.e. the use of a class of manually
defined context words could help the stochastic parser to
address long-term dependencies that have so far proved
difficult. Finally, the ATIS task results in relatively sim-
ple semantic structures and yields a limited vocabulary
size. It would be interesting to apply our proposed tech-
niques to a more complex domain, such as an appoint-
ment scheduling task (Minker et al., 1999), implying a
more natural speech-based interaction. This would en-
able us to validate our approach on larger vocabulary
sizes.
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