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Abstract
The language model of the target language plays an impor-
tant role in statistical machine translation systems. In this
work, we propose to use a new statistical language model that
is based on a continuous representation of the words in the
vocabulary. A neural network is used to perform the projec-
tion and the probability estimation. This kind of approach is
in particular promising for tasks where a very limited amount
of resources are available, like the BTEC corpus of tourism
related questions.

This language model is used in two state-of-the-art sta-
tistical machine translation systems that were developed by
UPC for the 2006 IWSLT evaluation campaign: a phrase- and
an n-gram-based approach. An experimental evaluation for
four different language pairs is provided (translation of Man-
darin, Japanese, Arabic and Italian to English). The proposed
method achieved improvements in the BLEU score of up to
3 points on the development data and of almost 2 points on
the official test data.

1. Introduction
Speech translation of dedicated tasks like the BTEC corpus
of tourism related questions is challenging. Statistical meth-
ods have obtained very good performances at the last evalua-
tion campaigns organized by the International Workshop on
Spoken Language Translation (IWSLT). However, these tech-
niques rely on representative corpora to train the underlying
models: sentence aligned bilingual texts to train the transla-
tion models and text in the target language to develop a sta-
tistical language model (LM). In the 2006 IWSLT evaluation
40k sentences of bitexts were provided in the Supplied Re-
sources in the “open data track”. The English side of the bi-
texts is used to train the target language model (326k words).
This is a very limited amount of resources in comparison to
other tasks like the translation of journal texts (NIST evalua-
tions) or of parliament speeches (TC-STAR evaluations).

Therefore, new techniques must be deployed to take the
best advantage of the limited resources. For instance, it
was proposed to use a translation lexicon that was extracted
by applying the Competitive Linking Algorithm on the bi-
lingual training data [1]. By that way, important improve-
ments in the BLEU score were obtained. With respect to lan-
guage modeling, most of the statistical machine translation

systems (SMT) that participated in the 2005 IWSLT evalua-
tion used 4-gram back-off LM. Some sites reported improve-
ments using 5-gram word or class-based LMs [2, 3], or even
9-gram prefix and suffix LMs [4]. Language model adap-
tation was investigated in [5]. Other interesting approaches
include factored [6] or syntax-based language models [7],
but to the best of our knowledge, there were not yet applied
to the BTEC corpus.

In this paper, we investigate if the so-called continuous
space language model can be used in a state-of-the-art sta-
tistical machine translation system for the IWSLT task. The
basic idea of the continuous space LM, also called neural
network LM, is to project the word indices onto a contin-
uous space and to use a probability estimator operating on
this space [8]. Since the resulting probability functions are
smooth functions of the word representation, better general-
ization to unknown n-grams can be expected. A neural net-
work can be used to simultaneously learn the projection of
the words onto the continuous space and to estimate the n-
gram probabilities. This is still a n-gram approach, but the
LM posterior probabilities are ”interpolated” for any possi-
ble context of length n-1 instead of backing-off to shorter
contexts.

This approach was successfully used in large vocabulary
continuous speech recognition [9], and initial experiments
have shown that it can be used to improve a word-based sta-
tistical machine translation system [10]. Here, the continu-
ous space LM is applied the first time to a state-of-the-art
phrase-based SMT system. Translation of four different lan-
guages is considered: Mandarin, Japanese, Arabic and Italian
to English. These languages exhibit very different character-
istics, e.g. with respect to word order, which may affect the
role of the target LM, although a reordering model is used in
the SMT systems. We also investigate the use of the continu-
ous space LM in a SMT system based on bilingual n-grams.

This paper is organized as follows. In the next section
we first describe the baseline statistical machine translation
systems. Section 3 presents the architecture and training al-
gorithms of the continuous space LM and section 4 summa-
rizes the experimental evaluation. The paper concludes with
a discussion of future research directions.
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2. Baseline systems
During the last few years, the use of context in SMT systems
has provided great improvements in translation. SMT has
evolved from the original word-based approach to phrase-
based translation systems. In parallel to the phrase-based
approach, the use of bilingual n-grams gives comparable re-
sults, as shown by Crego et al. [11]. Two basic issues dif-
ferentiate the n-gram-based system from the phrase-based:
training data are monotonically segmented into bilingual
units; and the model considers n-gram probabilities rather
than relative frequencies. This translation approach is de-
scribed in detail by Mariño et al. [12].

Both systems follow a maximum entropy approach, in
which a log-linear combination of multiple models is im-
plemented, as an alternative to the source-channel approach:
This simplifies the introduction of several additional models
explaining the translation process, as the search becomes:

e∗ = argmax p(e|f)

= argmax
e

{exp(
∑

i

λihi(e, f))} (1)

where f and e are sentences in the source and target language
respectively. The feature functions hi are the system mod-
els and the λi weights are typically optimized to maximize
a scoring function on a development set. Both the n-gram-
based and the phrase-based system use a language model on
the target language as feature function, i.e. P (e), but they
differ in the translation model. In both cases, it is based on
bilingual units. A bilingual unit consists of two monolingual
fragments, where each one is supposed to be the translation
of its counterpart. During training, each system learns its
dictionary of bilingual fragments.

Both SMT approaches were evaluated in IWSLT’06 eval-
uation and they are described in detail in [13, 14]. Therefore,
we only give a short summary in the following two sections.

2.1. N -gram-based Translation Model
The translation model can be thought of a language model
of bilingual units (here called tuples). These tuples define a
monotonic segmentation of the training sentence pairs (f, e),
into K units (t1, ..., tK).

The translation model is implemented using an n-gram
language model, (for N = 4):

p(e, f) = Pr(tK1 ) =

K
∏

k=1

p(tk | tk−2, tk−1) (2)

Bilingual units (tuples) are extracted from any word-to-
word alignment according to the following constraints:

• a monotonic segmentation of each bilingual sentence
pairs is produced,

• no word inside the tuple is aligned to words outside the
tuple, and

• no smaller tuples can be extracted without violating
the previous constraints.

As a consequence of these constraints, only one segmen-
tation is possible for a given sentence pair.

Two important issues regarding this translation model
must be considered. First, it often occurs that a large num-
ber of single-word translation probabilities are left out of the
model. This happens for all words that are always embedded
in tuples containing two or more words, then no translation
probability for an independent occurrence of these embedded
words will exist. To overcome this problem, the tuple 4-gram
model is enhanced by incorporating 1-gram translation prob-
abilities for all the embedded words detected during the tuple
extraction step. These 1-gram translation probabilities are
computed from the intersection of both, the source-to-target
and the target-to-source alignments.

The second issue has to do with the fact that some words
linked to NULL end up producing tuples with NULL source
sides. Since no NULL is actually expected to occur in trans-
lation inputs, this type of tuple is not allowed. Any target
word that is linked to NULL is attached either to the word
that precedes or the word that follows it. To determine this,
we use the POS entropy approach, see de Gispert et al. [15].

2.2. Phrase-based Translation Model

Given a sentence pair and a corresponding word alignment,
a phrase (or bilingual phrase) is any pair of m source words
and n target words that satisfies two basic constraints:

1. Words are consecutive along both sides of the bilingual
phrase,

2. No word on either side of the phrase is aligned to a
word out of the phrase.

Given the collected phrase pairs, we estimate the phrase
translation probability distribution by relative frequency.

P (f |e) =
N(f, e)

N(e)
P (e|f) =

N(e, f)

N(f)
(3)

where N(f,e) means the number of times the phrase f is trans-
lated by e; N(e), the number of times the phrase e appears;
and, N(f), the number of times the phrase f, appears. No-
tice that the phrase-based system has two feature functions
(P (f |e) and P (e|f)) which are considered translation mod-
els.
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2.3. Additional features
Both systems share the additional features which follows.

• A target language model. In the baseline system, this
feature consists of a 4-gram model of words, which is
trained from the target side of the bilingual corpus.

• A source-to-target lexicon model. This feature,
which is based on the lexical parameters of the IBM
Model 1, provides a complementary probability for
each tuple in the translation table. These lexicon pa-
rameters are obtained from the source-to-target align-
ments.

• A target-to-source lexicon model. Similarly to the
previous feature, this feature is based on the lexical
parameters of the IBM Model 1 but, in this case, these
parameters are obtained from target-to-source align-
ments.

• A word bonus function. This feature introduces a
bonus based on the number of target words contained
in the partial-translation hypothesis. It is used to com-
pensate for the system’s preference for short output
sentences.

• A phrase bonus function. This feature is used only
in the phrase-based system and it introduces a bonus
based on the number of target phrases contained in the
partial-translation hypothesis.

All these models are combined in the decoder. Addition-
ally, the decoder allows for a non-monotonic search with the
following distortion model.

• A word distance-based distortion model.

P (tK1 ) = exp(−
K
∑

k=1

dk)

where dk is the distance between the first word of the
kth unit, and the last word +1 of the (k − 1)th unit.
Distance is measured in words referring to the units
source side.

To reduce the computational cost we place limits on the
search using two parameters: the distortion limit (the maxi-
mum distance measured in words that a tuple is allowed to be
reordered, m) and the reordering limit (the maximum num-
ber of reordering jumps in a sentence, j). This feature is in-
dependent of the reordering approach presented in this paper,
so they can be used simultaneously.

In order to combine the models in the decoder suitably,
an optimization tool based on the Simplex algorithm is used
to compute log-linear weights for each model.

3. Continuous Space Language Models
The architecture of the neural network LM is shown in Fig-
ure 1. A standard fully-connected multi-layer perceptron
is used. The inputs to the neural network are the indices
of the n−1 previous words in the vocabulary hj=wj−n+1,
. . . , wj−2, wj−1 and the outputs are the posterior probabili-
ties of all words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N ] (4)

where N is the size of the vocabulary. The input uses the
so-called 1-of-n coding, i.e., the ith word of the vocabulary is
coded by setting the ith element of the vector to 1 and all the
other elements to 0. The ith line of the N × P dimensional
projection matrix corresponds to the continuous representa-
tion of the ith word. Let us denote cl these projections, dj

the hidden layer activities, oi the outputs, pi their softmax
normalization, and mjl, bj , vij and ki the hidden and out-
put layer weights and the corresponding biases. Using these
notations, the neural network performs the following opera-
tions:

dj = tanh

(

∑

l

mjl cl + bj

)

(5)

oi =
∑

j

vij dj + ki (6)

pi = eoi /

N
∑

r=1

eor (7)

The value of the output neuron pi corresponds directly to
the probability P (wj = i|hj).

projection
layer hidden

layer

output
layerinput

projections
shared

LM probabilities
for all words

probability estimation

Neural Network

discrete
representation:

indices in wordlist
continuous

representation:
P dimensional vectors

N

wj−1 P

H

N

P (wj =1|hj )
wj−n+1

wj−n+2

P (wj =i|hj)

P (wj =N|hj )

cl

oiM

Vdj

p1 =

pN =

pi =

Figure 1: Architecture of the continuous space LM. hj de-
notes the context wj−n+1, . . . , wj−1. P is the size of one
projection and H ,N is the size of the hidden and output layer
respectively. When short-lists are used the size of the output
layer is much smaller then the size of the vocabulary.
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Training is performed with the standard back-
propagation algorithm minimizing the following error
function:

E =

N
∑

i=1

ti log pi + β





∑

jl

m2
jl +

∑

ij

v2
ij



 (8)

where ti denotes the desired output, i.e., the probability
should be 1.0 for the next word in the training sentence and
0.0 for all the other ones. The first part of this equation is
the cross-entropy between the output and the target proba-
bility distributions, and the second part is a regularization
term that aims to prevent the neural network from overfitting
the training data (weight decay). The parameter β has to be
determined experimentally. Training is done using a resam-
pling algorithm [9].

It can be shown that the outputs of a neural network
trained in this manner converge to the posterior probabili-
ties. Therefore, the neural network directly minimizes the
perplexity on the training data. Note also that the gradient is
back-propagated through the projection-layer, which means
that the neural network learns the projection of the words
onto the continuous space that is best for the probability es-
timation task.

In general, the complexity to calculate one probability
with this basic version of the neural network LM is dom-
inated by the dimension of the output layer since the size
of the vocabulary (up to 200k) is usually much larger than
the dimension of the hidden layer (300. . .600). Therefore, in
previous applications of the continuous space LM, the output
was limited to the s most frequent words, s ranging between
2k and 12k [9]. This was not necessary for the BTEC task
since the whole training corpus contains less than 10k dif-
ferent words. Thus, this is the first time that the continuous
space LM is used to predict the LM probabilities of all words
in the vocabulary.

The incorporation of the continuous space LM into the
phrase- or n-gram-based translation system is done by us-
ing n-best lists. In all our experiments, the language model
probabilities provided by the continuous space LM are used
to replace those of the default 4-gram LM (a particular fea-
ture function). The coefficients of all the feature functions
were then optimized on the development data.

We did not try to use the continuous space LM directly
during decoding since this would result in increased decod-
ing times. Calculating a LM probability with a back-off
model corresponds basically to a table look-up using hashing
techniques, while a forward pass through the neural network
is necessary for the continuous space LM. Very efficient op-
timizations are possible, in particular when n-grams with the
same context can be grouped together, but a reorganization
of the decoder may be necessary. More details on optimizing
the neural network LM can be found in [9].

4. Experimental Evaluation
In this work we report results on the Basic Traveling Ex-
pression Corpus (BTEC). This corpus consists of typi-
cal sentences from phrase books for tourists in several lan-
guages [16]. Translation to English from four languages is
considered: Mandarin, Japanese, Arabic and Italian. The ref-
erence phrase- and n-gram-based SMT systems participated
in the open data track of the 2006 IWSLT evaluation [13, 14],
i.e. only the supplied subset of the full BTEC corpus was
used to train all the statistical models. Details on the data
preprocessed as in [13, 14] are summarized in Table 1. We
report results on the supplied development corpus of 489 sen-
tences (less than 6k words) using the BLEU score with seven
references translations. The scoring is case insensitive and
punctuations are ignored.

Transl. dir.: Ma/En Ja/En Ar/En It/En
Train sent. 40k 40k 20k 20k
(bitexts) words 314.4k 390.2k 183.3k 155.4k

English 326k 324.8k 166.3k 166.3k
Dev sent. 489

words 5.5k 6.8k 5.9k 5.2k
Eval sent. 500

words 5.9k 7.4k 6.6k 6k

Table 1: Available data in the supplied resources of the 2006
IWSLT evaluation.

For all tasks, a non-monotonic search was performed tak-
ing the limits of: m = 5 and j = 3. Except for the Italian
to English in the phrase-based system, we used a monotonic
search. Also we used the histogram pruning in the decoder
(i.e. limit the maximum number of hypotheses in a stack),
b = 50 both in the development set and in the test set, for
all tasks. The decoder first generates a lattice from which we
then extract 1000-best lists. Rescoring these 1000-best list
with the continuous space LM takes about 20min a Linux
server with two 2.8 GHz Xeon processors.

The reference 4-gram back-off LM was trained on the
English part of the bitexts (40k sentences, 326k words) using
the SRI LM toolkit [17]. The neural network LM was trained
on exactly the same data. Like in previous applications, the
neural network is not used alone but interpolation is per-
formed to combine several language models. First of all, the
neural network and the reference back-off LM are interpo-
lated together - this always improved performance since both
seem to be complementary. Second, seven neural networks
with different sizes of the continuous representation were
trained and interpolated together.1 This usually achieves bet-
ter generalization behavior than training one larger neural
network. The interpolation coefficients were calculated by
optimizing perplexity on the development data, using an EM

1We did not try to find the minimal number of neural networks to be
combined. It is quite likely that the interpolation of less networks would
result in the same BLEU scores.
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Phrase-based system N -gram-based system
Oracle Ref. CSLM Oracle Ref. CSLM

Mandarin 33.1 20.68 21.97 32.0 20.84 21.83
Japanese 26.9 17.29 18.27 28.6 18.34 19.77
Arabic 40.1 27.92 30.28 41.6 29.09 30.89
Italian 56.2 41.66 44.03 58.1 41.65 44.67

Table 2: BLEU scores on the development data. Oracle uses a back-off LM trained on the references, Ref. is the default system
as submitted in the official IWSLT evaluation and CSLM uses the continuous space LM.

procedure. The obtained values are 0.33 for the back-off LM
and about 0.1 for each neural network LM respectively. This
interpolation is used in all our experiments. For the sake of
simplicity we will still call this the continuous space LM.

An alternative would be to add a feature function and
to combine all LMs under the log-linear model framework,
using maximum BLEU training. This raises the interesting
question whether the two criteria (minimal perplexity versus
maximal BLEU score) lead to equivalent performance when
multiple language models are used in a SMT system. In
previous experiments with a word-based statistical machine
translation system, both approaches yielded similar perfor-
mance [10].

Each network was trained independently using early
stopping on development data. Convergence was achieved
after about 10 iterations through the training data (less than 1
hour of processing on a standard Linux machine). The other
parameters are as follows:

• Context of three words (4-gram),

• The dimension of the continuous representation of the
words were c =100,120,140,150,160,180 and 200,

• The dimension of the hidden layer was set to P = 200,

• The initial learning rate was 0.005 with an exponential
decay,

• The weight decay coefficient was set to β = 0.00005.

Perplexity on development data is a popular and easy
to calculate measure to evaluate the quality of a language
model. However, it is not clear if perplexity is a good crite-
rion to predict the improvements when the language model
will be used in a SMT system. All seven reference transla-
tions were concatenated to one development corpus of 40k
words. The perplexity of the 4-gram reference back-off LM
on this data is 124.0. This could be reduced to 96.6 using the
continuous space LM.

4.1. Development results and analysis
Table 2 gives the BLEU scores when the back-off and con-
tinuous space LM is used with a phrase- and n-gram-based
SMT system. Often it is informative to have an idea of the
oracle BLEU score of the n-best lists. This was estimated by

rescoring the n-best lists with a “cheating back-off LM” that
was build on the concatenated seven reference translation.

The continuous space network LM always achieved im-
portant improvements of the BLEU score, ranging from 1
point absolute (phrase-based system for Japanese) up to 3
points absolute (n-gram-based system for Italian).

In the case of the n-gram-based system, the translation
model includes an implicit target language model. However,
the additional target language model provided by the neu-
ral network gives also a clear improvement in the transla-
tion quality. In average the gain is slightly higher than for
the phrase-based system. The n-gram-based system has less
bilingual units. However, it seems to offer slightly higher
variability in the n-best lists because of the single segmenta-
tion of the training parallel corpus. In the n-best lists gener-
ated by the phrase-based system we usually find several equal
sentences corresponding to different segmentations. On the
contrary, the n-gram-based system rarely outputs equal tar-
get sentences with different segmentations. That is why the
n-best lists of the n-gram-based system tend to offer a higher
oracle than the n-best lists of the phrase-based system.

Finally, the performance of the continuous space LM dif-
fers sensibly for the different translation directions. It is not
surprising that the best improvements were obtained for the
translation from Italian to English, two languages that are
quite similar with respect to word order. The gain brought
by the neural network LM is 2.4 points for the phrase-based
system and 3 points BLEU for the n-gram-based system. For
the two Asian languages Mandarin and Japanese, whose sen-
tence structure is more different from English word order, the
improvement brought by the new LM is about 1 point BLEU.
In fact, the hypotheses in the n-best lists differ mostly in the
choice of words and phrases, but there is less variation in the
word order. It is surprising to see the good performance of
the neural network LM for the translation of the Arabic lan-
guage: the gain is 2.36 for the phrase-based system and 1.8
for the n-gram-based system.

The (position independent) word error rates are given in
Table 3. The most interesting case is the translation from
Arabic to English: the word error rate decreases by 3.3 per-
cent and the position independent word error rate by 2.4 per-
cent. There are also important word error reductions for the
translation direction Japanese to English when using the n-
gram SMT system. We are currently investigating why the
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Phrase-based N -gram-based
Oracle Ref. CSLM Oracle Ref. CSLM

Mandarin/English:
mWER 59.1 67.4 66.5 58.1 67.8 66.6
mPER 44.5 50.8 50.1 45.3 51.5 50.6
Japanese/English:

mWER 70.8 74.6 77.0 63.5 73.0 71.3
mPER 48.5 52.2 54.6 46.1 53.4 51.8
Arabic/English:

mWER 49.1 56.0 52.7 48.1 55.7 52.8
mPER 40.3 45.7 43.3 39.6 44.0 42.5
Italian/English:

mWER 34.1 42.3 40.7 33.1 42.8 40.8
mPER 26.6 31.6 30.5 26.0 31.9 30.7

Table 3: Word error rates on the development data.

error rates increase for the phrase-based system. Note also,
that the absolute values are much higher for this language.
One can also notice that the position independent oracle word
error rates are only about 5 percentage lower than the ones of
the best system. This may indicate that the n-best list gener-
ation could be improved in order to include more alternative
translations. As already stated above, the n-best lists pro-
duced by the n-gram-based SMT system seem to be better
than those provided by the phrase-based system.

In addition to the automatic scores we give some example
translations in Figure 2. It seems that the neural network LM
manages to improve the fluency of the translation in some
cases, for instance the phrase “we arrive time is two thirty” is
replaced by “we arrive at two thirty”, “two and the fifty min-
utes” by “two and fifty minutes”, “two o’clock and thirty”
by “two thirty”, “you ask” by “you can ask” and “are very
busy” by “I’m very busy”. Although the meaning seems to
be pretty much preserved in the translations from the Asian
languages, the fluency is clearly less good. Looking at these
examples, one has the impression that the fluency of the n-
gram-based SMT systems is slightly better than the one of
the phrase-based systems.

4.2. Test set results

The results on the official test data of the 2006 IWSLT evalua-
tion are summarized in Table 4. The numbers in the columns
“reference” corresponds to the official results of the phrase
and n-gram-based SMT system that UPC has developed. The
numbers in the columns “CSLM” were obtained by rescor-
ing the n-best lists of these official systems with the continu-
ous space language model described in this paper, using the
coefficients of the feature functions that were tuned on the
development data.

As usually observed in SMT, the improvements on the
test data are smaller than those on the development data
which was used to tune the parameters. As a rule of thumb,

Phrase-based N -gram-based
Ref. CSLM Ref. CSLM

Mandarin/English:
BLEU 19.74 21.01 20.34 21.16
NIST 6.24 6.55 6.22 6.40

mWER 67.95 68.16 68.30 67.63
mPER 52.46 51.87 52.81 52.31

Japanese/English:
BLEU 15.11 15.73 16.14 16.35
NIST 5.83 5.99 5.86 5.87

mWER 77.51 78.15 75.45 75.59
mPER 55.14 54.96 55.52 55.29

Arabic/English:
BLEU 23.72 24.86 23.83 23.70
NIST 6.72 6.69 6.80 6.70

mWER 63.04 60.89 62.81 61.97
mPER 49.43 48.61 49.41 48.85

Italian/English:
BLEU 35.55 37.41 35.95 37.65
NIST 8.32 8.53 8.40 8.57

mWER 49.12 47.22 48.78 47.59
mPER 38.17 36.62 38.12 37.26

Table 4: Result summary on the test data.

the gain on the test data is often half as large as on the
Dev-data. It seems that the phrase-based system generalizes
slightly better than the n-gram-based approach: there is less
difference between the improvements on the development
and those on the test data. This seems not to be related to
the use of the continuous space LM since such behavior was
previously observed on other tasks. One possibility could
be that the n-gram approach is more sensible to overfitting
when tuning the feature function coefficients. However, the
n-gram-based SMT systems still achieve better BLEU scores
than the phrase-based systems in three out of four tasks.

Another surprising result is the bad performance of the
continuous space language model for the translation of Ara-
bic to English with the n-gram-based system: the BLEU and
NIST scores decrease despite an improvement in the word
error rates. In fact, the reference n-gram-based SMT system
performs not very well on the test data in comparison to the
phrase-based system. While its BLEU score was almost 1.2
better on the development data it achieves basically the same
result on the test data (23.83 BLEU with respect to 23.72).
This needs further investigation.

5. Discussion
This paper investigated the use of a neural network LM that
performs probability estimation in a continuous space. Since
the resulting probability functions are smooth functions of
the word representation, better generalization to unknown n-
grams can be expected. This is particularly interesting for
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tasks like the BTEC corpus where only limited amounts of
appropriate LM training material are available. The continu-
ous space LM is used to rescore the n-best lists of a phrase-
and n-gram-based statistical machine translation system that
was developed by UPC for the 2006 IWSLT evaluation.

The results show a significant improvement for four dif-
ferent languages pairs and for both systems. The improve-
ments on the development data range from one point BLEU
when translating from Japanese to English, up to three points
BLEU for the pair Italian to English. The new approach
also achieves good improvements on the test data, the BLEU
score increases by up to 1.9 points. All these results were
obtained on top of the evaluation systems. In the case of
the n-gram-based system, the translation model includes an
implicit target language model. However, the additional tar-
get language model provided by the neural network also pro-
vides a clear improvement in the translation quality.

In this work, we have only studied 4-gram language
models, but it is easy to train a neural network LM with
much longer contexts since the complexity of our approach
increases only slightly with the size of the context. An-
other promising direction that we have not yet explored, is
to use the neural network LM for the translation model of
the n-gram-based system. This would result in a continuous
space translation model.

6. Acknowledgments
This work has been partially funded by the European
Union under the integrated project TC-STAR (IST-2002-FP6-
506738, http://www.tc-star.org) and the Spanish government
under a FPU grant.

7. References
[1] B. Chen, R. Cattoni, N. Bertoldi, M. Cettelo, and

M. Federico, “The ITC-irst SMT system for IWSLT-
2005,” in IWSLT, 2005, pp. 98–104.

[2] M. Paul, T. Doi, Y. Hwang, K. Imamura, H. Okuma,
and E. Sumita, “Nobody is perfect: ATR’s hybrid
approach to spoken language translation,” in IWSLT,
2005, pp. 55–62.

[3] A. Menezes and C. Quirk, “Microsoft research treelet
translation system: IWSLT evaluation,” in IWSLT,
2005, pp. 105–108.

[4] H. Tsukada, T. Watanabe, J. Suzuki, H. Kazawa, and
H. Isozaki, “The NTT statistical machine translation
system for IWSLT2005,” in IWSLT, 2005, pp. 128–133.

[5] S. Hewavitharana, B. Zhao, A. S. Hildebrand, M. Eck,
C. Hori, S. Vogel, and A. Waibel, “The CMU statis-
tical machine translation system for IWSLT2005,” in
IWSLT, 2005, pp. 63–70.

[6] K. Kirchhoff and M. Yang, “Improved language model-
ing for statistical machine translation,” in ACL’05 work-
shop on Building and Using Parallel Text, 2005, pp.
125–128.

[7] E. Charniak, K. Knight, and K. Yamada, “Syntax-based
language models for machine translation,” in MT Sum-
mit, 2003.

[8] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A
neural probabilistic language model,” Journal of Ma-
chine Learning Research, vol. 3, no. 2, pp. 1137–1155,
2003.

[9] H. Schwenk, “Continuous space language models,” ac-
cpeted for publication in Computer Speech and Lan-
guage, 2007.
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Reference translations:
ref 1: for your information we will arrive at two thirty and your departure time is at two fifty

oh sorry i’m very busy now you can ask someone else
ref 2: please refer to this information arrival at two thirty and departure at two fifty

sorry i’m a bit tied up at this moment could you ask someone else
ref 3: for your reference landing time is two thirty and take off time is two fifty

i’m sorry i can’t help since i’m busy now please try someone else
ref 4: we will arrive at two thirty and set out at two fifty please consider this information

sorry i’m a bit too busy right now it’ll be nice if you’d ask someone else
ref 5: you will need to consider that we will arrive at two thirty and your next flight is at two fifty

i’m sorry but i’m busy at the moment please ask someone else
ref 6: please bear in mind that we touch down at two thirty and your connecting flight is at two fifty

i’m sorry but i’m very busy now you can try asking someone else
ref 7: please be mindful that we arrive at two thirty and your next departure is at two fifty

sorry but i’m very busy now you might want to ask someone else
Phrase-based system:
Zh/En baseline: could you we arrive time is two thirty departure time is two five ten

oh i’m sorry but i’m busy right now you can ask someone else
CSLM: you can the time we arrive at two thirty departure time is two fifty

oh i’m sorry but i’m busy right now you can ask someone else please
Ja/En baseline: we arrive at two thirty take off time at two fifty in your it you please

i’m sorry but my hand you had better ask someone else you can
CSLM: we arrive at two thirty take off schedule at two fifty in you it you please

i’m sorry my hand you had better ask someone else i can do
Ar/En baseline: information your will we arrive at two thirty and an appointment is two and the fifty minutes

excuse me i’m very busy ’s ask someone else
CSLM: information i’ll arrive at two thirty and time is two and fifty minutes

excuse me i’m very busy’s ask someone else
It/En baseline: for your information we’ll be arriving at two o’clock and thirty and your departure time is at

two o’clock and fifty
oh sorry i’m very busy right now you can ask someone else

CSLM: for your information we’ll arrive at two thirty and your departure time is at two fifty
oh sorry i’m very busy now you can ask someone else

N -gram-based system:
Zh/En baseline: you can reference our arrival time is two thirty departure time is two fifty

oh i’m sorry i’m in a hurry now you ask someone else
CSLM: you can reference our arrival time is two thirty departure time is two fifty

oh i’m sorry i’m busy right now you can ask someone else
Ja/En baseline: we arrive at two thirty takeoff time is fifty two o’clock so you reference you please

i’m sorry but i can’t get them eyes someone else to ask you can
CSLM: we arrive at two thirty take off time is two o’clock in fifty so you your reference please

i’m sorry but i can’t get them eyes someone else ask you can
Ar/En baseline: i’ll information you arrive at two thirty time and is two and fifty minutes

excuse me i’m very busy it’s ask someone else
CSLM: i’ll information you arrive at two thirty and time is two and fifty minutes

excuse me i’m very busy it’s ask someone else
It/En baseline: it’s for your information we’ll be arriving at two thirty and your departure time is at two fifty

oh excuse me are very busy right now you can ask someone else
CSLM: it’s for your information we’ll arrive at two thirty and your departure time is at two fifty

oh sorry i’m very busy right now you can ask someone else

Figure 2: Example translations using the baseline back-off and the continuous space language model (CSLM).
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