@inproceedings{semmar-etal-2006-using,
title = "Using Stemming in Morphological Analysis to Improve {A}rabic Information Retrieval",
author = "Semmar, Nasredine and
Laib, Meriama and
Fluhr, Christian",
editor = "Mertens, Piet and
Fairon, C{\'e}drick and
Dister, Anne and
Watrin, Patrick",
booktitle = "Actes de la 13{\`e}me conf{\'e}rence sur le Traitement Automatique des Langues Naturelles. Articles longs",
month = apr,
year = "2006",
address = "Leuven, Belgique",
publisher = "ATALA",
url = "https://aclanthology.org/2006.jeptalnrecital-long.29",
pages = "318--327",
abstract = "Information retrieval (IR) consists in finding all relevant documents for a user query in a collection of documents. These documents are ordered by the probability of being relevant to the user{'}s query. The highest ranked document is considered to be the most likely relevant document. Natural Language Processing (NLP) for IR aims to transform the potentially ambiguous words of queries and documents into unambiguous internal representations on which matching and retrieval can take place. This transformation is generally achieved by several levels of linguistic analysis, morphological, syntactic and so forth. In this paper, we present the Arabic linguistic analyzer used in the LIC2M cross-lingual search engine. We focus on the morphological analyzer and particularly the clitic stemmer which segments the input words into proclitics, simple forms and enclitics. We demonstrate that stemming improves search engine recall and precision.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="semmar-etal-2006-using">
<titleInfo>
<title>Using Stemming in Morphological Analysis to Improve Arabic Information Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nasredine</namePart>
<namePart type="family">Semmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meriama</namePart>
<namePart type="family">Laib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Fluhr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2006-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Actes de la 13ème conférence sur le Traitement Automatique des Langues Naturelles. Articles longs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Piet</namePart>
<namePart type="family">Mertens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cédrick</namePart>
<namePart type="family">Fairon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Dister</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Watrin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ATALA</publisher>
<place>
<placeTerm type="text">Leuven, Belgique</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Information retrieval (IR) consists in finding all relevant documents for a user query in a collection of documents. These documents are ordered by the probability of being relevant to the user’s query. The highest ranked document is considered to be the most likely relevant document. Natural Language Processing (NLP) for IR aims to transform the potentially ambiguous words of queries and documents into unambiguous internal representations on which matching and retrieval can take place. This transformation is generally achieved by several levels of linguistic analysis, morphological, syntactic and so forth. In this paper, we present the Arabic linguistic analyzer used in the LIC2M cross-lingual search engine. We focus on the morphological analyzer and particularly the clitic stemmer which segments the input words into proclitics, simple forms and enclitics. We demonstrate that stemming improves search engine recall and precision.</abstract>
<identifier type="citekey">semmar-etal-2006-using</identifier>
<location>
<url>https://aclanthology.org/2006.jeptalnrecital-long.29</url>
</location>
<part>
<date>2006-04</date>
<extent unit="page">
<start>318</start>
<end>327</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Stemming in Morphological Analysis to Improve Arabic Information Retrieval
%A Semmar, Nasredine
%A Laib, Meriama
%A Fluhr, Christian
%Y Mertens, Piet
%Y Fairon, Cédrick
%Y Dister, Anne
%Y Watrin, Patrick
%S Actes de la 13ème conférence sur le Traitement Automatique des Langues Naturelles. Articles longs
%D 2006
%8 April
%I ATALA
%C Leuven, Belgique
%F semmar-etal-2006-using
%X Information retrieval (IR) consists in finding all relevant documents for a user query in a collection of documents. These documents are ordered by the probability of being relevant to the user’s query. The highest ranked document is considered to be the most likely relevant document. Natural Language Processing (NLP) for IR aims to transform the potentially ambiguous words of queries and documents into unambiguous internal representations on which matching and retrieval can take place. This transformation is generally achieved by several levels of linguistic analysis, morphological, syntactic and so forth. In this paper, we present the Arabic linguistic analyzer used in the LIC2M cross-lingual search engine. We focus on the morphological analyzer and particularly the clitic stemmer which segments the input words into proclitics, simple forms and enclitics. We demonstrate that stemming improves search engine recall and precision.
%U https://aclanthology.org/2006.jeptalnrecital-long.29
%P 318-327
Markdown (Informal)
[Using Stemming in Morphological Analysis to Improve Arabic Information Retrieval](https://aclanthology.org/2006.jeptalnrecital-long.29) (Semmar et al., JEP/TALN/RECITAL 2006)
ACL