@inproceedings{murakami-etal-2007-statistical,
title = "Statistical machine translation using large {J}/{E} parallel corpus and long phrase tables",
author = "Murakami, Jin{'}ichi and
Tokuhisa, Masato and
Ikehara, Satoru",
booktitle = "Proceedings of the Fourth International Workshop on Spoken Language Translation",
month = oct # " 15-16",
year = "2007",
address = "Trento, Italy",
url = "https://aclanthology.org/2007.iwslt-1.23",
abstract = "Our statistical machine translation system that uses large Japanese-English parallel sentences and long phrase tables is described. We collected 698,973 Japanese-English parallel sentences, and we used long phrase tables. Also, we utilized general tools for statistical machine translation, such as {''}Giza++{''}[1], {''}moses{''}[2], and {''}training-phrasemodel.perl{''}[3]. We used these data and these tools, We challenge the contest for IWSLT07. In which task was the result (0.4321 BLEU) obtained.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="murakami-etal-2007-statistical">
<titleInfo>
<title>Statistical machine translation using large J/E parallel corpus and long phrase tables</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jin’ichi</namePart>
<namePart type="family">Murakami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masato</namePart>
<namePart type="family">Tokuhisa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoru</namePart>
<namePart type="family">Ikehara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2007-oct 15-16</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth International Workshop on Spoken Language Translation</title>
</titleInfo>
<originInfo>
<place>
<placeTerm type="text">Trento, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our statistical machine translation system that uses large Japanese-English parallel sentences and long phrase tables is described. We collected 698,973 Japanese-English parallel sentences, and we used long phrase tables. Also, we utilized general tools for statistical machine translation, such as ”Giza++”[1], ”moses”[2], and ”training-phrasemodel.perl”[3]. We used these data and these tools, We challenge the contest for IWSLT07. In which task was the result (0.4321 BLEU) obtained.</abstract>
<identifier type="citekey">murakami-etal-2007-statistical</identifier>
<location>
<url>https://aclanthology.org/2007.iwslt-1.23</url>
</location>
<part>
<date>2007-oct 15-16</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Statistical machine translation using large J/E parallel corpus and long phrase tables
%A Murakami, Jin’ichi
%A Tokuhisa, Masato
%A Ikehara, Satoru
%S Proceedings of the Fourth International Workshop on Spoken Language Translation
%D 2007
%8 oct 15 16
%C Trento, Italy
%F murakami-etal-2007-statistical
%X Our statistical machine translation system that uses large Japanese-English parallel sentences and long phrase tables is described. We collected 698,973 Japanese-English parallel sentences, and we used long phrase tables. Also, we utilized general tools for statistical machine translation, such as ”Giza++”[1], ”moses”[2], and ”training-phrasemodel.perl”[3]. We used these data and these tools, We challenge the contest for IWSLT07. In which task was the result (0.4321 BLEU) obtained.
%U https://aclanthology.org/2007.iwslt-1.23
Markdown (Informal)
[Statistical machine translation using large J/E parallel corpus and long phrase tables](https://aclanthology.org/2007.iwslt-1.23) (Murakami et al., IWSLT 2007)
ACL