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Abstract

In this paper we describe and compare two
techniques for the automatic diacritization of
Arabic text: First, we treat diacritization
as a monotone machine translation problem,
proposing and evaluating several translation
and language models, including word and
character-based models separately and com-
bined as well as a model which uses statisti-
cal machine translation (SMT) to post-edit a
rule-based diacritization system. Then we ex-
plore a more traditional view of diacritization
as a sequence labeling problem, and propose a
solution using conditional random fields (Laf-
ferty et al., 2001). All these techniques are
compared through word error rate and diacriti-
zation error rate both in terms of full diacriti-
zation and ignoring vowel endings. The em-
pirical experiments showed that the machine
translation approaches perform better than the
sequence labeling approaches concerning the
error rates.

1 Introduction

Modern Arabic texts are normally composed of
scripts without diacritic marks. The problem is
that many words have different meanings depend-
ing on their diacritization. This leads to ambiguity
when processing data for text-to-speech and speech-
to-text applications. A reduction of this ambigu-
ity with the help of diacritization in a text docu-
ment may benefit other language processing tasks
as well. Diab et al. (2007) report an improvement
from 0.4389 to 0.4416 BLEU scores (Papineni et
al., 2002) in Arabic-English SMT after inserting the

passivization diacritic “damma”. Since diacritics at
the word endings mark the cases in Arabic, a result-
ing diacritized translation in Arabic language is eas-
ier to understand for native speakers even if the word
order is wrong. The techniques used for Arabic dia-
critization are applicable to other languages such as
Romanian, French (Tufis and Chitu, 1999) and He-
brew (Gal, 2002).

We study two solutions for the diacritization prob-
lem. First, we regard the diacritization problem
as a phrase-based translation task. In this case a
SMT system is used as a tool for our experiments.
We also combine a rule-based approach with our
SMT methods by post-editing the output of a rule-
based diacritizer. Then we solve the problem as a
sequence labeling problem with the help of condi-
tional random fields (CRFs). That means we in-
tegrate global features to determine our diacritized
output sequence and create dependencies between a
non-diacritized input sequence, global features such
as part-of-speech tags and the output sequence by
feature functions.

In the next section we describe aspects of the
Arabic language and the diacritics and present the
related work in Section 3. Section 4 outlines our
approaches, while Section 5 explains which data
sources we used to establish, tune and test our sys-
tems. Our experiments and results are outlined in
Section 6. We conclude our work in Section 7 and
suggest further approaches based on our results.

2 Arabic Language and Diacritics

The Arabic script is written, read and encoded from
right to left. Many Arabic letters change their ap-
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pearance depending on their position in a word. The
Arabic alphabet consists of 28 consonant letters.

Arabic diacritics are located below and above
each character within a word. They are voweliza-
tion marks and usually absent. “shadda” is the only
diacritic which appears in several modern Arabic
scripts. Native speakers distinguish the right pro-
nunciation and the correct meaning of a word with-
out diacritic marks in an automatic way by consider-
ing the context and the position of the word in a sen-
tence. Their instinctive knowledge of Arabic gram-
mar and vocabulary enable them to correctly vocal-
ize words in written texts based on the context.

For example, the bare form “Elm” may have dif-
ferent meanings (Figure 1) depending on the di-
acritization: “Eilm” is translated as “science” or
“learning”, while “Ealam” means “flag”. Ambiguity
may also occur on the grammatical level as diacritics
at word endings are correlated with case and verbal
information (Maamouri et al., 2006).

Figure 1: Ambiguity in Arabic.

Arabic diacritics can be categorized into

• short vowels pronounced as /a/ (fatha), /u/
(damma) and /i/ (kasra),

• double case endings pronounced as /an/
(fathatayn), /un/ (dammatayn) and /in/ (kas-
ratayn),

• syllabification marks.

Double case endings are vowels used at the end
of a word to distinguish cases. The syllabification
mark “shadda”, which is sometimes inserted in writ-
ten text, symbolizes the doubling of a consonant.
“sukuun”, the second syllabification mark, indicates
that a letter does not contain any vowels. We re-
stored the diacritics shown in Figure 2.

3 Previous Work

Different methods such as rule-based (El-Imam,
2004), example-based, hierarchical (Emam and Fis-

Figure 2: Arabic Diacritics.

cher, 2005), morphological and contextual-based
(Vergyri and Kirchhoff, 2004) as well as methods
with Hidden Markov Models (Mustafa Elshafei and
Alghamdi, 2006) and weighted finite state machines
(Nelken and Shieber, 2005) have been applied for
the diacritization of Arabic text.

Some authors treated diacritization as a machine
translation problem. El-Sadany and Hashish (1989)
and El-Imam (2004) proposed rule-based methods
for the translation from non-diacritized text to di-
acritized text. One drawback of these systems is
the difficulty to keep the rules consistent, up-to-date
and extend them to other Arabic dialects. Emam
and Fischer (2005) suggested an example-based hi-
erarchical top-down approach, similar to example-
based translation approaches. In order to translate
a sentence in the test set the system tries to find a
matching sentence in the training data. If a match-
ing sentence is found, the whole sentence is applied,
if not, the system searches for matching phrases. If
no matching phrases are found character n-grams are
restored.

Other researchers approached diacritization as a
sequence labeling problem. In (Vergyri and Kirch-
hoff, 2004) each word is tagged as one of many
possible forms provided by the Buckwalter’s Mor-
phological Analyser (Buckwalter, 2004). In order
to learn the tag sequence the Expectation Maxi-
mization algorithm is applied. In this approach the
morphological and contextual information is com-
bined with an acoustic signal. The authors reported
a word error rate (WER) of 27.3% and a diacriti-
zation error rate (DER) of 11.54%. Nelken and
Shieber (2005) restored diacritics with an algorithm
based on weighted finite state machines. Their sys-
tem was trained on LDC’s Arabic Treebank Data.
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Words not occurring in the data are substituted by
characters and larger morphological units. Alto-
gether they achieved a WER of 23.61% and a DER
of 12.79%. Ignoring vowel endings, a WER of
7.33% and a DER of 6.35% was achieved. Zitouni
et al. (2006) proposed a maximum entropy-based ap-
proach. Their system works with lexical, segment-
based and part-of-speech tag features. They re-
ported a WER of 18.0% and a DER of 5.5% as
well as a WER of 7.9% and a DER of 2.5% ig-
noring the final vowelization. Mustafa Elshafei and
Alghamdi (2006) considered the word sequence of
non-diacritized Arabic text as an observation se-
quence and solved the problem with Hidden Markov
Models. The hidden states are the possible dia-
critized expressions of the words. Finally, the op-
timal sequence of diacritized words or states are
obtained by applying the Viterbi Algorithm. They
achieved a DER of 4.1% for a test set of 995 words
with their system which was trained on the Qur’an
text. A further reduction to about 2.5% was reached
by using a preprocessing stage and trigrams for a
selected number of short and frequent words. A dia-
critization system based on the combination of a tag-
ger and a lexeme language model was suggested by
Habash and Rambow (2007). Analogous to (Vergyri
and Kirchhoff, 2004) their system uses the Buck-
walter Arabic Morphological Analyzer. The remain-
ing WER was 14.9% and the DER 4.8%. Ignoring
vowel endings, a WER of 5.5% and a DER of 2.2%
were reported.

4 Automatic Diacritization

In this section we present our methods for the auto-
matic diacritization.

4.1 Diacritization as Translation

A straightforward approach is treating the un-
diacritized text as source text and the diacritized
text as target text to build a translation model for
a phrase-based statistical machine translation sys-
tem. We create a phrase table with non-diacritized
entries on the source side and diacritized entries on
the target side as well as a language model with di-
acritized text. As the alignment is very simple –
it is strictly monotone and each diacritized word or
phrase has exactly one non-diacritized form – gener-

ating the phrase table is very easy. Starting from the
diacritized training corpus, we run over all sentences
and all positions in each sentence and write all word
n-grams, n = 1...N , starting in this position. Re-
moving then the diacritics gives us a list of phrase
pairs (with repetitions), from which the phrase table
can be build. As phrase translation scores we use the
relative frequencies.

Using appropriate representations of the non-
diacritized and diacritized text we can operate on the
character level, on the word level, or combined on
both levels.

4.1.1 Diacritization on the Word Level
The following figure illustrates Arabic text on the

word level. The characters are ASCII characters
since we are using the Buckwalter Transliteration.

without diacritics mwskw Jf b
with diacritics muwsokuw Jaf b

For many words there are different diacritized
forms available. Both, the language model and also
the context given within phrases can help to disam-
biguate in these cases. Due to the limited training
data there are words in the test set, which neither
occur in the phrase table nor in the language model.
Our system ”translates” unknown words by inserting
them into the output. However, this typically leads
to an error.

4.1.2 Diacritization on the Character Level
As proposed for the restoration of diacritics in

(Mihalcea, 2002), we also developed a system which
works on the character level. The representation of
the Arabic text on character level splits undiacritized
text into individual consonants and diacritized text
into consonant-vowel compounds.

m w s k w space J f space
mu w so ku w space Ja f space

We insert a special word separator to be able to
restore the words after diacritization has been done.

The advantage of operating on the character level
is that all words can be diacritized. I.e. we do not
have any unknown words, as in the case, when the
phrase table contains words. A drawback, however,
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is that much less context is covered by the character-
based system. A 5-gram covers now perhaps only
one word, or part of a word. Therefore, dependen-
cies between words are not well captured.

4.1.3 Diacritization on both Levels

By creating a diacritizer that functions on both
levels we combine the benefits of both the diacriti-
zation on word level and on character level.

The SMT system used in our experiments can take
lattices as input. The lattice representation allows
edges labeled with words or with characters. There-
fore, the decoder is able to switch from word level
to character level and back. Due to the phrase count
feature in the decoder translations composed from
fewer phrases are preferred. This introduces a bias
toward using phrases on the word level. However,
if a word has not been seen in the training data the
system can use the diacritization generated on the
character level.

An example for a lattice, which enables the ap-
proach on both levels is illustrated in Figure 3.

Figure 3: Lattice with Edges from Character to Character
and from Word to Word.

4.1.4 Diacritization: Rule-based Translation
with Statistical Phrase-based
Post-Editing

The approaches described so far do not use lin-
guistic rules for the restoration of diacritics. Re-
cently, there have been a number of studies showing
that a statistical machine translation system can suc-
cessfully be used to post-edit and thereby improve
the output of a rule-based translation system (Simard
et al., 2007). If appropriate training material is pro-
vided, it is possible to train a SMT system to au-
tomatically correct systematic errors made by rule-
based systems. A similar approach can be used in
our case: given the output of a rule-based diacritizer,
we can use the statistical approach to perform a post-
editing step.

AppTek1, a company specializing in the devel-
opment for human language technology, including
speech recognition and machine translation, pro-
vided diacritized data for this kind of automatic
post-editing experiments. The output from their
rule-based diacritizer and the corresponding manu-
ally diacritized text was made available.

We build a statistical phrase-based system by
aligning the output of the rule-based system and the
correct vowelized text. This system is then used
to operate on test sentences, which are already di-
acritized with the rule-based diacritizer, as a post-
editing step. The benefits are that the rule-based sys-
tem excludes a large number of possible forms.

4.2 Diacritization as Sequence Labeling
Problem

mwskw X: m w s k w
| | | | |

muwsokuw Y: u ε o u ε

The above figure shows an example of an
undiacritized word “mwskw” and its diacriza-
tion “muwsokuw”. Again, we represent the un-
diacritized word as a sequence of characters X =
(m,w, s, k, w). As presented in the figure, we la-
bel each consonant in X with the vowels or diacrit-
ics, which should follow that consonant in the dia-
critized form. Note that a consonant might be fol-
lowed by more than one vowel or diacritic. Conso-
nants without diacritics are marked with an epsilon
(ε). Thus the task of diacritization of X is actually
finding its sequence Y = (u, ε, o, u, ε). In this way,
the problem of diacritization can be considered as
the sequence labeling problem.

Conditional random fields (CRF) (Lafferty et al.,
2001) have been successful in similar NLP prob-
lems such as parts-of-speech tagging (Lafferty et al.,
2001) and noun phrase chunking. CFRs can model
overlapping features and it is easy to integrate lin-
guistic features such as parts-of-speech. The CRF
model estimates the parameters θ

∗
to maximize the

conditional probability of the sequence of tags given
the sequence of the consonants in the training data

1Application Technology Inc., US company
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T as given by the following equation:

θ
∗ = argmax

θ

∑
(X,Y )∈T

log p
(
Y |X, θ

)
(1)

where log p
(
X|Y, θ

)
=
∑

i θifi (Xq, Yq), fi is a
feature function, and Xq, Yq are sub-sequences of
X,Y respectively.

At the test time, given a sequence of consonants
X , and parameter θ∗ found at the training time we
decode X into the sequence Y ∗.

Y ∗ = argmax
Y

p
(
X|Y, θ∗

)
In our model, we use the features which are the

combinations of lexicals, part-of-speeches of current
word, next and previous word. We also use the n
neighbor characters as context features. In the ex-
periment section, we will report the results for dif-
ferent context sizes.

5 Data

We work with two data sources: The diacritized
LDC’s Arabic Treebank data for the translation ap-
proaches and the conditional random fields approach
as well as data provided by AppTek for running post-
editing experiments. In addition to the information
on the used data we describe the representation of
the Arabic text in Buckwalter Transliteration in this
section.

5.1 LDC’s Arabic Treebank
The data to train, tune and test the translation- and
conditional random fields-based diacritizers are ex-
tracted from the LDC’s Arabic Treebank of dia-
critized An Nahar News stories. This data set has
been used by several researchers (Maamouri et al.,
2006), (Nelken and Shieber, 2005), (Zitouni et al.,
2006).

Our sentences are in Buckwalter Transliteration,
as pictured in Section 5.3, and do not include any
punctuation marks. Since the corpus contains com-
plete vowelization including case endings, the dia-
critics a, u, i, F, N, K, B and o had to be deleted in
order to create the non-vowelized part of the parallel
corpus.

All systems except the post-editing system used
a training set of 23 k sentences with 613 k words

from this data source. A development set to tune the
parameters of the systems and a test set, each con-
sisting of 1,190 sentences with approximately 32k
words, were used.

5.2 AppTek Data

Applications Technology (http://www.apptek.com/),
a company specializing in the development for hu-
man language technology, including speech recog-
nition and machine translation, provided diacritized
data for automatic post-editing experiments. The
output of a rule-based diacritizer and manually gen-
erated reference diacritization, consisting of 116 k
words in 40 k sentences, were split into a training
set of 36 k sentences (104 k words), a development
set to tune the system and a test set, each containing
2 k sentences with approximately 6 k words.

As the sentences provided by AppTek are more
similar to each other and also rather short, often con-
taining a single word, the error rates with AppTek’s
data are lower than those obtained with the LDC’s
Arabic Treebank data.

5.3 Data Representation

For processing purposes the data we work with are
in Buckwalter Transliteration (Buckwalter, 2004).
Roman character equivalents were chosen to be rea-
sonably mnemonic. From Unicode to Buckwalter
Transliteration and back it is a one-to-one mapping
without gain or loss of ambiguity.

Figure 4 describes the function of each diacritic,
their pronunciation as well as their corresponding
character in Buckwalter Transliteration. (We use
”B” to represent the ”shadda” for processing rea-
sons.)

6 Experiments and Results

6.1 The Translation Systems

For the translation on word and character level we
work with a phrase-based translation system as de-
scribed in (Vogel et al., 2003). As starting points
both a word-based and a character-based baseline
SMT system were established and evaluated. Both
systems contain 10-gram Suffix Array Language
Models (Zhang, 2006). The phrase tables contain up
to 5-gram entries and appropriate phrase translation
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Figure 4: Buckwalter Transliteration.

probabilities. Later we tested a system with addi-
tional lexical scores and 7-gram character entries in
the phrase table. In our system which operates on
both levels we experimented with longer n-grams in
the Suffix Array Language Model as well as with the
SRI Language Model Toolkit (Stolcke, 2002).

We evaluated our systems through word error
rates and diacritization error rates. Since the error
rates are higher at the word endings and since we
tested methods to improve especially the final vow-
elization, we report the error rates regarding as well
as ignoring final vowelization.

6.1.1 The Word Level System and the
Character Level System

As shown in Table 1 the results of the system on
character level are better than those of the word-
based system since the word-based system was not
able to translate many words.

As the system on character level outperformed the
word level system, we tried to enhance the charac-
ter level system first. Our focus was on the trans-
lation model. So far the phrase table only con-
tained phrase translation probabilities. As relative

word-based char-based
final WER 22.8 21.8
vow DER 7.4 4.8
no final WER 9.9 7.4
vow DER 4.3 1.8

Table 1: Results of Word-based and Character-based
Baseline Systems.

baseline max. phrase lexical
system length 7 score

final WER 21.8 21.6 21.5
vow DER 4.8 4.8 4.7
no final WER 7.4 7.5 7.4
vow DER 1.8 1.9 1.8

Table 2: Results for the Character-based System using
longer phrases and additional Lexical Weights.

frequencies are unreliable for low frequency event
we added so-called lexical scores. Given a source
phrase f1...fJ and a target phrase e1...eI , and a
word-to-word alignment between source and target
words, we calculate:

lex(fJ1 |eI1, a) =
J∏
j=1

1
|{i|(j, i) ∈ a}|

∑
(j,i)∈a

w(fj |ei)

As in the case of diacritization the alignment is
strictly monotone and one-to-one, the factor in front
of the sum reduces to 1.

To generate a phrase table containing both the
phrase translation probabilities ϕ(vow/non vow)
and the lexical weights lex(vow/non vow) we
used the Moses Package (Koehn et al., 2007) and
GIZA++ (Och and Ney, 2003). By default a phrase
table containing up to 7-gram entries is created. In
order to have a comparable phrase table to see the
improvement resulting from the additional lexical
scores we also used a 7-gram phrase table in our
baseline system. Table 2 demonstrates that enlarging
the maximum number of tokens in a phrase within
the phrase table from five to seven characters re-
duces the word error rate by 0.2% while the lexical
weights reduce it by 0.1%.

6.1.2 The System on both Levels
We build an SMT system which operates on word

level for known words and on character level for un-
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language char word word word
model 5 3 4 6

SRI SRI SA
final WER 20.1 19.9 20.0 20.0
vow DER 4.3 4.3 4.3 4.3
no final WER 6.6 6.8 6.9 6.9
vow DER 1.6 1.7 1.7 1.7

Table 3: Results of the Systems on both Levels, using dif-
ferent Language Models (Character and Word Level, dif-
ferent n-gram Lengths, and build with the SRILM Toolkit
or the SALM Toolkit).

known words. To have a common representation
on the target side for the language model, we con-
verted the target side of the word-based phrase trans-
lation table into the character representation. That is
to say, while matching on the source side operates
on words, the output is segmented into characters.
Ideally, the decoder should allow to apply character-
level and word-level simultaneously. Unfortunately,
the decoder available for the experiments did not
provide this functionality. To still have the benefit of
larger context from a word-based language model,
we applied n-best list rescoring. We generated 1000-
best lists and converted from character representa-
tion back to word representation. An additional lan-
guage model score was then calculated. We ex-
perimented with the Suffix Array Language Model
Toolkit and the SRI Language Model Toolkit. The
development data was used to optimize the weights
for the combination of the decoder scores and the
additional language model score.

After n-best list rescoring the new first-best trans-
lation is evaluated. The results in Table 3 show
that working on both levels yields a significant im-
provement in comparison to the systems on charac-
ter level. A large context in the language model on
word level does not perform any better. The word-
based 3-gram SRI Language Model scored better
than a 4- or 6-gram SRI Language Model and any
Suffix Array Language Model with equivalent n-
grams.

6.1.3 The Post-Editing System
To test the automatic post-editing approach the

output of AppTek’s rule-based diacritizer together
with the manually diacritized data was used to build
the phrase table and the language model. The phrase

baseline post-editing
final WER 15.6 13.8
vow DER 5.5 4.9
no final WER 10.3 9.3
vow DER 3.5 3.2

Table 4: Results of the Post-Editing System, compared to
the purely Statistical Baseline System.

table was build using GIZA++ and scripts from the
Moses Package. The conditional phrase translation
probabilities as well as the lexical weights were used
to score the phrase pairs.

Table 4 shows the post-editing results. While the
output of the rule-based system gave rather high er-
ror rates (not shown in the table) we see accept-
able error rates for the purely statistical approach.
However, it was outperformed by the combined sys-
tem, in which the output of AppTek’s rule-based dia-
critizer was processed by the automatic post-editing
system.

6.2 The Diacritization as Sequence Labeling
System

Considering our results so far it is evident that the er-
ror rates at the word endings are significantly higher
than at the word stems. To overcome the limits of the
phrase-based translation approach we explored the
integration of grammatical information into a sta-
tistical approach for the diacritization with the help
of conditional random fields. Parts-of-speech were
assigned to each word using the Stanford Parts-of-
Speech Tagger (Toutanova and Manning, 2000). In
addition to the non-vowelized input, the output se-
quence depended on previous and following source
word as well as on the parts-of-speech for the pre-
vious, current, and the following word. The system
uses the CRF++ toolkit (Kudo, 2007) to train and
test our model. However, due to memory constraints
we could only use the most effective features. To in-
corporate wider context we had to reduce the amount
the training data to 75%. The results are shown in
Table 5. We see that using wider context, which is
counted in terms of characters, is crucial in improv-
ing the performance of the system. Unfortunately,
we did not observe that the additional information,
e.g. word identities and parts-of-speech, could re-
duce the diacritization errors at the word endings.
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data 100% 75%
context 4 4 6 8 10 12

final WER 22.8 24.1 22.6 22.2 22.0 21.9
vow DER 5.1 5.4 4.9 4.8 4.7 4.7
no final WER 9.4 10.0 8.5 8.3 8.3 8.4
vow DER 2.2 2.4 2.0 1.9 1.9 1.9

Table 5: Results of the CRF Approach for different amounts of the data and different context.

7 Conclusion and Future Work

We presented two approaches to diacritize Arabic
text. In the first approach diacritization was regarded
as a translation problem, and we used techniques
from phrase-based translation to ”translate” from
undiacritized Arabic into diacritized Arabic. We ex-
perimented with word-level and character-level pro-
cessing, and also with a combined system, where
the input is represented on both levels in the form
of input lattices. Benefits were gained by operating
both on word and character level. As was expected,
longer n-grams in the phrase table gave better re-
sults, as did the addition of lexical scores.

In the second approach we treated diacritization
as a sequence labeling problem. Using CRFs al-
lowed us to integrate additional features, like parts-
of-speech. Due to memory limitations this approach
could not be fully explored, i.e. we had to trade-off
between training corpus size and number of features.
We expect that with more data and additional fea-
tures this approach will perform on the same level,
or even better then the translation approach.

We also experimented with automatically post-
editing the output of a rule-based system. The com-
bined system outperformed both the rule-based and
the purely statistical system.

A major problem in diacritization are the errors
in the word endings. For example, in our phrase-
based diacritization systems we detected that the
word ending “pi” (ta marbouta with kasra) occurs al-
most 2% and “i” (kasra) even more than 5.5% more
frequently in our hypothesis than in the reference
or in the training data. The word endings depend
on the grammatical role of the word within the sen-
tence. This leads to long-range dependencies, which
are not well captured by the current models. Future
experiments will explore, which features are useful
to reduce these error.

Another point of interest would be to find out
whether the integration of the proposed diacriti-
zation features enhances the Arabic-English or
English-Arabic translation systems.
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