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Abstract 

In statistical machine translation systems, phrases with similar 

meanings often have similar but not identical distributions of 

translations. This paper proposes a new soft clustering method 

to smooth the conditional translation probabilities for a given 

phrase with those of semantically similar phrases. We call this 

semantic smoothing (SS). Moreover, we fabricate new phrase 

pairs that were not observed in training data, but which may be 

used for decoding. In learning curve experiments against a 

strong baseline, we obtain a consistent pattern of modest 

improvement from semantic smoothing, and further modest 

improvement from phrase pair fabrication.   

1. Introduction 

The translation model component of phrase-based statistical 

machine translation (SMT) systems (the “phrase table”) 

consists of conditional probabilities for phrase pairs observed 

in the training data. However, estimation of these 

probabilities is hindered by data sparseness; thus, phrase table 

smoothing techniques are often applied [1].  

The most popular phrase table smoothing approach is 

lexical weighting, where the conditional probabilities for the 

phrase pair made up of source-language phrase s and target-

language phrase t are smoothed with probabilities for 

alignments between individual words inside s and t. Two 

different lexical weighting techniques are given in [2,3].  

In this paper, we explore a different approach to phrase 

table smoothing which is based on paraphrases. Our work 

extends a new type of smoothing described in two recent 

papers [4, 5]. This type of paraphrase-based smoothing differs 

from earlier types described in the literature because it 

exploits “endogenous” [5] information – i.e., the original 

training data for the SMT system – rather than external data 

such as additional parallel corpora.  

In [4], phrases in the same language that are close 

together, according to metrics based on distributional 

similarity of translations into the other language, are hard-

clustered. For instance, the English phrases “kick the bucket”, 

“die” and “expire” might have similar but not identical 

distributions of French phrase translations; when these 

English phrases are clustered together, the pooled distribution 

is more informative than the individual ones. The “phrase 

clusters” in each language are used offline to generate 

estimates PPC(s|t) and PPC(t|s) for source and target phrases s 

and t, providing two new features for the decoder.  

Generation of these hard clusters relies on a 

computationally intensive, iterative process. A starting 

language (which could be the source or target language) is 

picked. A small amount of clustering is carried out in that 

language. That is, starting with a situation in which each 

phrase in the language is its own cluster, phrases that are 

close together are merged into the same cluster. This affects 

the distances between phrases in the other language, since 

phrases in the first language that are now in the same cluster 

are treated as if they were identical. A small amount of 

clustering is carried out in the second language, then again in 

the first language using the altered distances for that language, 

and so on.  

Max [5] describes an online technique that relies on 

context in the input text to weight information from 

paraphrases. This technique increases the estimated P(t|s) if 

paraphrases of s were translated as t in contexts in the training 

data that are similar to the context of the current instance of s 

in the input text.  

Some other work on paraphrases for SMT based on 

external data include [6] which extracts paraphrases from 

external parallel corpora, and [7] which showed that this kind 

of paraphrase generation could improve SMT performance. [8] 

derived paraphrases from external monolingual data using 

distributional information. 

In this work, we first extend [4] by replacing hard clusters 

with a softer version in which each phrase’s distribution is 

smoothed with the distributions of its nearest neighbours. We 

call this semantic smoothing (SS); it is more accurate, and 

requires less computation, than hard clustering.  

A more dramatic advance over earlier work is that we 

“fabricate” phrase pairs that weren’t seen in training data. In 

[7], phrase pairs (s,t) may be fabricated because s occurs in 

the input text but cannot be found in the phrase table. 

REMOOV [9] does not use paraphrases, but fabricates phrase 

pairs with OOV source by modifying observed Arabic source 

phrases using rules that capture frequent misspellings, 

transliteration variations, etc. Self-training [10] also does not 

use paraphrases; it learns variations of existing phrase pairs 

from the N-best output of the system on new source-language 

input. 

Our fabricated phrase pairs are different: we apply 

paraphrase information to generate new translations for some 

phrases that already have translations in the phrase table, 

using other information in the phrase table.  

2. Semantic Smoothing 

In this section, we describe how, for a given phrase in the 

source or target language, we find the other phrases in the 

same language that are its closest neighbours in a kind of 

semantic space (2.1-2.3). Then, we explain how the 

conditional translation probabilities for the given phrase are 

smoothed with information from those neighbours (2.4). 

Finally, we explain “phrase pair fabrication”: generation of 

some phrase pairs that weren’t observed in the original data, 

but which are judged to be plausible according to the 

smoothed probabilities (2.5).  
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2.1. Metrics  

We use a metric from [4] to compute the semantic distance 

between two phrases in the same language: the so-called 

Maximum Average Probability Loss (MAPL) metric.   

Each phrase is represented by the vector of its counts of 

co-occurrence with phrases in the other language, transformed 

by a modified version of tf-idf [11]. Unlike the original tf-idf, 

this transformation is not based on word-document co-

occurrences, but on phrase-phrase co-occurrences in the 

phrase table. For example, for source-language phrases, each 

co-occurrence count #(s,t) between a source phrase s and a 

target phrase t is multiplied by a factor reflecting the 

information content of t. Let #diffS be number of different 

source-language phrases in the phrase table, and let #[t>0] for 

a target phrase t be the number of different source phrases s 

that co-occur with t. Then let 

])0t[/#log(#)ts,(#)ts,('# >×= diffS
S

.  Similarly, prior 

to target-language phrase distance computation, let 

])0s[/#log(#)ts,(#)ts,('# >×= diffT
T

where #diffT is 

the number of different target-language phrases in the phrase 

table.   

Let two phrases u and v in one language be shown as 

vectors with dimension D (= # of different phrases of any 

length in the other language): 

u = {u1, u2, …, uD} 

v = {v1, v2, …, vD} 

where ui and vi are the transformed phrase co-occurrence 

counts derived from the formulas above. For instance, to 

represent phrase u in the source language, ui is the 

transformed count of co-occurrences of u with the ith target 

phrase ti: ui =  #S’(u,ti).  

To define MAPL, first let: 
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 Like [4], we multiply the MAPL distance with the Dice 

coefficient. For u and v in the same language, this is 
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where |u| is the number of non-zero entries in u, and 

| vu ∩ | is the number of entries that are non-zero in u and v. 

This shrinks the u, v distance if they have similar patterns of 

non-zero counts.  

Again following [4], we used a “maximum common word 

sequence” (MCWS) edit distance. This is defined as  
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where len() returns the number of  words and MCWS(u,v) 

is the length of the longest continuous substring that is in both 

string u and string v.  

Thus our distance function was MAPL×Dice×Edit. We 

experimented with some other distance functions on 

development data (e.g., with products involving cosine 

distance) but never found one that worked better than this 

one. The intuition is that the MAPL term measures how 

similar the information in the count vectors from the two 

phrases is, the Dice term gives a bonus if the pattern of non-

zero counts for the two phrases is similar (even if the patterns 

of relative weights for the non-zero counts are very different) 

and the Edit term gives a bonus if the two phrases have 

common word sequences.  

Important note: the transformations above (e.g., our 

version of tf-idf) are only applied to distance calculations; the 

probability calculations below use the original phrase co-

occurrence counts.  

2.2. Defining nearest neighbours (NNs) 

SS differs from [4] in smoothing the distribution for a phrase 

with the distributions of its at most M nearest neighbours 

(NNs), rather than with the distributions of its fellow-

members in a fixed phrase cluster (disjoint from other 

clusters). NNs must satisfy a maximum distance criterion, 

parameterized by a user-defined threshold F.  Thus, the NNs 

are those of its neighbours which are a distance F or less away 

from it; if there are more than M such neighbours, the M 

closest to the phrase are chosen. 

 
Figure 1: phrase clustering vs. nearest-neighbour semantic 

smoothing (SS) 

   

Figure 1 gives an example. Clustering gives two 

distributions: one calculated from phrases “a”, “b”, “c”, “d”, 

and “e”, and yielding cluster probabilities for those phrases, 

and another calculated from “f”, “g”, “h” and “i” and yielding 

probabilities for those phrases. By contrast, SS yields a 

different distribution for each phrase. Figure 1B shows NNs 

for 3 of the phrases, “c”, “f” and “g” (each of the 9 phrases 

has its own NN set). Unlike 1A, in 1B a phrase can be 

involved in calculating more than one distribution: e.g., “e” is 

involved in the distributions for “c” and “f”. Phrases with 

many observations have a strong impact on distributions they 

participate in. E.g., “f” has more observations than other 
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phrases (hence the large font) and thus strongly influences SS 

estimates for “g” and itself. 

2.3. Rank discounting of counts 

The most effective version of SS we tried used distance-

dependent discounting of information: it assigns less 

importance to information from NNs that are far away from 

the given phrase, on the grounds that their meaning is less 

similar to that of the given phrase than that of closer phrases. 

In practice, we used nearness rank rather than exact distance: 

the phrase itself gets rank 1, the closest other phrase to it gets 

rank 2, and so on. E.g., to smooth the “g” distribution in 

Figure 1B, counts from “g” are unchanged, those from “i” 

(the nearest phrase to “g”) are divided by 2, those from “h” 

(second nearest to “g”) are divided by 3, and those from “f” 

(third nearest) are divided by 4. The sum of the modified 

counts yields an estimated distribution for “g”. Discounting 

reduces the influence of the highly frequent phrase “f” on the 

smoothed “g” distribution. It would be interesting to 

experiment with a form of discounting that uses absolute 

distance instead of rank – we did not have time to explore this 

possibility.  

The details are as follows. Let’s list source phrases in 

some order s1, …, s|S| and similarly for target phrases t1, ..., t|T|. 

Let si = |T|-dimensional row vector of co-occurrence counts 

for si = [c(si,t1), … c(si,t|T|)], and let tj = |S|-dimensional 

column vector of co-occurrence counts for tj. Let #si = total 

count of si, let #tj = total count of tj, and let NNr(si) and 

NNr(tj) (with no underscore) denote the rth NN of si and tj 

respectively.  Let N(si) denote the ordered set of the count 

vectors for the NNs of si,  N(si) = [si; NN1(si); …; NNk(si)], 

0≤k≤M (if k=0 that means there were no acceptable 

neighbours for si and N(si) = [si]). Similarly, N(tj) = [tj; 

NN1(tj); …; NNm(tj)], 0≤m≤M.  

Let the “discount-by-rank” scheme above be denoted r(). 

Let’s construct rank-discounted total count vectors from N(si) 

and N(tj): 
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The count for phrase t inside the r(N(si)) vector is 

denoted r(N(si))[t], and the count for phrase s inside the 

r(N(tj)) vector is denoted r(N(tj))[s]. We denote the totals for 

these two vectors as #r(N(si))=∑tr(N(si))[t] and 

#r(N(tj))=∑sr(N(tj))[s]. 

Inside the r(N(si)) vector, for a target phrase tj, we can 

sum the rank-discounted contributions from its NNs; this is 

also what we get as the rank-discounted sum of contributions 

of the NNs of si inside r(N(tj). We denote this quantity  

#(r(N(si))∩r(N(tj))) 

  =r(N(si))[tj]+∑
=

+

k

r

r
r1

)]())[NN((
1

1
ji tsNr  

 =r(N(tj))[si]+∑
=

+

m

r

r
r1

)]())[NN((
1

1
ij stNr . (8) 

2.4. Conditional Probability Estimation 

We apply formulas in which both estimates benefit from 

smoothing in both languages. The intuition is that, for 

instance, the probability of translating the French word 

“louche” as “seedy” is estimated as the probability of 

translating “louche” or any of its French synonyms as “seedy” 

or any of the English synonyms of “seedy”, times the 

probability of choosing “seedy” from among its synonyms.  

Thus, we have ))(|)(())(|()|( jiiiji tNsNPsNsPtsP ×=  and 

))(|)(())(|()|( ijjjij sNtNPtNtPstP ×= . Here, )( isN  (for 

example) is a fuzzy set of observations that “resemble” si.  Let  
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2.5. Phrase Pair Fabrication 

We fabricate phrase pairs that were not seen in the training 

data but which are assigned high probability by the SS model, 

and allow the decoder to use them. For each phrase pair (s,t) 

that is observed in the training data, where s has a set of 

nearest neighbours (s1’, s2’, …, sk’), and t has a set of nearest 

neighbours (t1’, t2’, …, tm’), we add to the phrase table every 

pair (si’,tj’) that is not already in it. A fabricated phrase pair 

(FP) will be assigned a very small probability ε=10-18 by the 

relative frequency component of our SMT system, but may 

receive fairly high scores from SS and from the lexical 

weighting (LW) features; if an FP does have high SS and LW 

scores, it is quite possible it may be used for decoding. 

3. Experiments  

3.1. System details 

We carried out experiments on a phrase-based SMT system 

with a phrase table derived from merged counts of 

symmetrized IBM model 2 [12] and HMM [13] word 

alignments. The system has lexicalized and distance-based 

distortion components. For FPs, the lexicalized distortion 

components are set to default, averaged values.  

The baseline is a loglinear combination with language 

models, the distortion components, relative frequency 

estimators PRF(s|t) = #(s,t)/#t and PRF(t|s) = #(s,t)/s and lexical 

weights PLW(s|t) and PLW(t|s). The PLW() are based on [3] and 

can be computed without alignments inside phrases; Foster et 

al. [1] found this to be the most effective lexical smoothing 

technique. In our experiments, SS components PSS(s|t) and 

PSS(t|s) are added to the baseline. We set PRF(s|t) and PRF(t|s) 

to a small value ε=10-18 for FPs. Weights on feature functions 

are found by lattice MERT [14], with aggregation of lattices 

over iterations.  

Before doing the experiments described below, we carried 

out some preliminary CE experiments with FBIS as training 

data (9.0M target words) and NIST04 and NIST06 as 

development data to narrow down the exact way in which 

nearest neighbours are chosen and their statistics used for 

smoothing (we did not optimize separately for the FE 

language pair). These preliminary experiments showed that 

each of the three terms in the distance function 
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MAPL×Dice×Edit yields a performance improvement, as 

does use of the rank discounting described in Section 2.3. The 

experiments also helped us find a good value for the 

maximum number M (=10) of neighbours used for smoothing 

and for the F parameter that determines the maximum 

distance from the current phrase that a phrase can have, while 

still being used for smoothing.   

3.2. Data 

We evaluated our method on Chinese-to-English (CE) and 

French-to-English (FE) tasks. CE training data are from the 

NIST 2009 evaluation; all allowed bilingual corpora except 

the UN corpus, Hong Kong Hansard and Hong Kong Law 

corpus are used for the translation model (66.5M target words 

in total). For CE, we train two 5-gram language models: the 

first on the English side of the parallel data, and the second on 

the English Gigaword v4 corpus. Our CE development set is 

made up mainly of data from the NIST 2005 test set; it also 

includes some balanced-genre web-text from the NIST 

training material. NIST 2008 is used as the blind evaluation 

set.  

For the FE task, we used WMT 2010 FE track data. 

Parallel Europarl data are used for training (46.6M target 

words in total); WMT Newstest 2008 is used as the dev set 

and WMT Newstest 2010 is used as blind evaluation set. Two 

language models are used in this task: one is the English side 

of the parallel data, and the second is the English side of the 

GigaFrEn corpus.  

3.3. Results 

Our evaluation metric for all experiments was case-insensitive 

BLEU [15], with matching of n-grams up to n = 4.  

 

 
 

Figure 2: CE BLEU improvement vs. #training sent. 

 

 
 

Figure 3: FE BLEU improvement vs. #training sent. 

 

Table 1 : CE BLEU scores on NIST08 

 
Training  

(#sent.) 

#phrase 

pairs 

Baseline +SS +SS+FP 

25K 278K 15.87 16.00 16.08 

50K 518K 17.88 18.08 18.12 

100K 992K 19.64 19.83 20.06 

200K 1.93M 21.27 21.61 21.72 

400K 3.78M 22.66 22.97 23.05 

800K 7.18M 23.91 24.13 24.23 

1.6M 14.06M 25.10 25.30 25.30 

3.3M 27.17M 26.47 26.59 26.59 

 
Table 2: FE BLEU scores on Newstest 2010 

 
Training  

(#sent.) 

#phrase 

pairs 

Baseline +SS +SS+FP 

25K 1.12M 20.67 20.79 20.81 

50K 2.27M 22.13 22.37 22.41 

100K 4.56M 23.36 23.60 23.67 

200K 9.12M 24.23 24.54 24.59 

400K 18.22M 25.15 25.34 25.39 

800K 36.02M 25.8 25.92 25.94 

1.6M 70.71M 26.58 26.71 26.71 

 
We evaluated SS and phrase pair fabrication given 

various amounts of training data. Figures 2 and 3 give BLEU 

gains on test sets over the baseline; Tables 1 and 2 give more 

information about the same experiments. As with phrase 

clustering in [4], the gain is largest for medium amounts of 

data. “SS+FP” gives a small gain over “SS” alone for small 

and medium amounts of training. The biggest gain is 0.45 

BLEU for “SS+FP” in the CE NIST08 test with 200K 

training sentences. “SS” helps in all 15 experiments, and 

“SS+FP” helps further in 12 of 15 experiments. 

Are these results statistically significant? Most results in 

Tables 1 & 2 are not statistically significant, taken 

individually. However, note that (e.g.) each one of the 8 SS 

results in Table 1, and each one of the 7 SS results in Table 2, 

shows an improvement over the baseline. Under the null 

hypothesis that SS has no effect, the probabilities of an 

improvement or of a deterioration are equal: 0.5. Under the 

null hypothesis, the probability of seeing these SS results is 

thus like that of obtaining 15 “heads” in a row in a coin toss.  

 

Table 3: PC vs. SS vs. SS+FP (BLEU scores) 

 

 FBIS, CE 

NIST08 

400K, CE 

NIST08 

200K, FE 

Newstest 2010 

Baseline 23.11 22.66 24.23 

+PC 23.59 22.90 24.40 

+SS 23.70 22.97 24.54 

+SS+FP 23.85 23.05 24.59 
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We also compared SS with phrase clustering (PC). In [4], 

the largest gains for  PC over the baseline are for CE and FE 

systems trained on 400K and 200K sentence pairs 

respectively. We compared PC and SS systems trained on the 

same size data, and on the CE task when trained on FBIS 

data. As Table 3 shows, SS and SS+FP perform slightly 

better than PC. Since PC (which involves several iterations of 

clustering) requires much more computation than SS or 

SS+FP, the latter appear to be preferable.  

3.4. Analysis 

Figures 4-7 all pertain to phrase pairs used by the decoder to 

build the 1-best output on blind eval (for  the parameter 

settings given above).  

Figure 4 and Figure 5 are for systems trained on 200K 

sentence pairs (where improvement due to SS and SS+FP was 

highest). For these figures, “ch” means Chinese, “en” means 

English, and "fr" means French. Only around 15% of source 

and target decoding phrases for the CE and FE systems have 

any neighbours close enough to smooth their distribution – 

i.e., only a minority of phrase pairs benefit from SS. Only 

15.4% of CE and 17.2% of FE decoding phrase pairs in these 

systems have SS estimates that are different from RF (relative 

frequency) ones. (The proportion of phrases and phrase pairs 

with at least one NN was even lower in the original phrase 

tables for these systems: less than 10% of all phrases in CE 

and FE phrase tables, with 12.7% of CE and 15.8% of FE 

pairs in the tables having SS estimates different from RF). 

To summarize: for both CE and FE, less than 10% of 

source or target phrases in the phrase table, and around 15% 

of source or target phrases used to produce 1-best output are 

smoothed by SS. Thus, SS has a modest effect because it only 

smoothes a few phrases - most phrases don’t have NNs 

because their neighbours are too distant. 

 

 
 

Figure 4: CE - number of NNs per decoding phrase 

 

 
 

Figure 5: FE - number of NNs per decoding phrase  

 

Figure 6 shows the number and percentage of phrase 

pairs chosen for decoding that are fabricated. The numbers are 

tiny: the maximum is 185 decoding FPs in 25K CE (0.64% of 

the 28,837 phrases used for decoding by this system). The 

chosen FPs come from a large candidate pool: FPs were 

0.31%-0.13% of pairs in the CE phrase table (the proportion 

shrinks as training data grows from 25K to 3.3M) and 0.44%-

0.16% of pairs in the FE system (the proportion shrinks as 

training data grows from 25K to 1.6M). For both CE and FE, 

the number and proportion of FPs used for decoding goes 

down as the training data grows, even though Figures 2 & 3 

show the FPs help most around 100-200K. FPs are used more 

by CE than FE, perhaps because of noisier CE training data.  

Figure 7 shows the distribution of fabricated phrase pairs 

(s,t) by number of observations of s. The most common case 

for both CE and FE is fabrication of a new translation t for an 

s that has been observed twice in the training data.  

 

 
 

 Figure 6: % of decoding pairs that are fabricated vs. #training 

sentences. 

 

       
 
Figure 7: proportion of decoding FPs by # true observations 

of s (CE & FE both trained on 200K sent.) 

 

3.5. Examples  

Though we have not performed quantitative comparisons of 

the outputs of our baseline systems with those incorporating 

semantic smoothing (SS) and fabricated phrase pairs (FPs), 

we have carried out qualitative comparisons, and drawn some 

tentative conclusions.  

Table 4 shows some examples of the impact of SS on our 

French-English system. The first example is the ideal case: the 

baseline system (BL) outputs an incorrect, literal translation 

of the French term “systèmes d’exploitation” (“systems of 

exploitation”) while the system with SS outputs the correct 

translation, “operating systems”. Both the translation quality 

(combined fluency and adequacy as assessed by French-

English bilingual colleagues of the authors) and the BLEU 

score go up. The second example contains perhaps the 
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commonest type of change introduced by SS: a word 

substitution which neither improves nor degrades the quality 

of the translation as assessed by humans. Here, the word 

“restricted” output by the baseline is replaced by “limited” in 

the SS version. In this example, BLEU goes down because 

the reference happens to agree with the baseline in using 

“restricted”, but we observed just as many cases where neutral 

substitutions increased BLEU. In the third example, a rather 

complicated French idiom is translated incorrectly by the 

baseline, correctly by the system with SS. BLEU happens to 

go up, even though the SS system’s translation is somewhat 

different from the reference one. 

The last example is perhaps the most interesting. Here, the 

SS system generates a translation that is worse than the  

baseline’s according to both human assessment and BLEU. 

The system has fabulated a “we” subject for the second half of 

the sentence that isn’t in the source sentence (both the baseline 

and the SS system fabulate a “he” subject for the first half).  

Note that the incorrect second half of the SS output in the 

last example is more fluent than the corresponding part of the 

baseline output. This is what we’ve observed for most 

changes made by SS. Whether the differences introduced by 

SS are right, neutral, or wrong compared to the baseline (they 

are usually either right or neutral), they are typically in the 

direction of greater fluency. This is true for CE as well as for 

FE (though we don’t have room to present CE examples here). 

This makes sense: SS has its largest effect (see Fig. 7) on 

rarely observed phrases in the source language, causing them 

to be translated similarly to their common synonyms – i.e., 

less idiosyncratically and more fluently.  

We also looked at examples where an SS system that 

allows FPs had different output than that of an SS system 

without FPs. In one case (involving a very long sentence), the 

baseline and the SS system both had trouble with the French 

past participle “apparu”, meaning “appeared” or “emerged”. 

Where the reference has “when it emerged”, the baseline and 

the SS system both had the bizarre “after it is tripoli” 

(presumably originating from bad phrase alignment). The 

system with FPs corrected this to “after it is apparent”, 

correctly hypothesizing that “apparent” is an acceptable 

translation for “apparu”. In another French-to-English 

example we saw, neither the baseline nor the SS system could 

translate “joueront” (“they will play”), yielding the awkward 

“they will an important role” where the reference has “they 

will play an important role”. The system with FPs generates 

“they will have an important role” – not perfect, but much 

more fluent.  

4. Conclusion and Future Work 

We have shown that semantic smoothing (SS) of SMT phrase 

pairs improves performance for two language pairs. It may 

perform slightly better, and is certainly much less 

computationally expensive, than a previous hard clustering 

approach [4]. Improvement occurs when SS is only applied to 

“seen” phrase pairs; there seems to be a slight further 

improvement when the decoder can also use “fabricated” 

phrase pairs (SS+FP). Just as with phrase clustering in [4], the 

improvement is largest for medium amounts of training data. 

The explanation given in that paper was that smoothing of 

this type has the most impact on phrases that have enough 

observations that their neighbours can be located accurately, 

but not so many that smoothing is unnecessary. That 

explanation would make sense here too.  

“Fabrication” did not have a major impact in our 

experiments, but it is a logical extension of any kind of 

smoothing (not just SS): if probability mass can be moved 

from one seen phrase pair to another, it can also be moved 

from seen pairs to “holes” in the source-target co-occurrence 

matrix. The more phrase pair probability estimators there are 

in a system, the less important the RF estimators are and the 

safer it is to decode with FPs. In this paper, lexical models 

“vouched for” some FPs. Adding syntactic or other models 

might make FPs more important, because it would make it 

easier for the system to distinguish between bad, dangerous 

FPs and those that are plausible according to other evidence.  

As was mentioned in the discussion of Figures 4 & 5, less 

than 15% of the phrases used for decoding are affected by SS. 

This suggests that the modest improvements seen in Figures 2 

& 3 may be the result of fairly substantial gains on this small 

subset of the phrases (and, of course, no gain at all on the 

Table 4: SS - sample output for FE system. BL in first column means “baseline”; QUAL in the column Impact means 

human assessment; + means positive improved, = means neutral, - means negative impact. 

 

 English translation Impact 

1. Ref 

BL 

SS 

… a smartphone with two operating systems . 

… a smartphone equipped with two systems of exploitation . 

… a smartphone equipped with two operating systems . 

QUAL+, 

BLEU+ 

2. Ref 

BL 

SS 

access to many web sites is restricted . 

access to many websites is restricted . 

access to many websites is limited . 

QUAL=,  

BLEU- 

3. Ref 

BL 

SS 

it is not for want of trying . 

this is no fault to try . 

this is not without trying . 

QUAL+, 

BLEU+ 

4. Ref 

BL 

SS 

a nice evening , but tomorrow the work would continue . 

he had spent a pleasant evening but tomorrow should resume work . 

he had spent a pleasant evening but tomorrow we should go back to work . 

QUAL-, 

BLEU- 
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others). Thus, our priority must be to find ways of applying 

SS to a much larger proportion of phrases.  

We now believe that the main reason most phrases don’t 

have neighbours that are sufficiently close for SS to be 

profitably applied is polysemy.  An invented example: 

suppose the two English phrases that are closest to “red” are 

“scarlet” and “Marxist”. If “red” is smoothed with both of 

these, translations of “red” that should convey the colour 

sense may inappropriately convey the ideological sense, and 

vice versa. With our current approach, we end up choosing 

ultra-cautious parameter settings in which only phrases that 

have exactly the same sets of meanings are smoothed together, 

to avoid this sort of semantic pollution. It would be better to 

distinguish different senses of a phrase, so that (e.g.) the 

colour sense of “red” could be smoothed with statistics from 

“scarlet”, and the ideological sense smoothed with statistics 

from “Marxist”. The approach in [5] achieves this; thus, a 

hybridization of the two approaches seems like a promising 

direction. Note that our approach has advantages that the one 

in [5] lacks – for instance, we smooth both P(s|t) and P(t|s), 

while the other approach only smoothes P(t|s) – so a hybrid 

approach would probably be an improvement over both 

parent approaches.  

SS could be improved in several other ways, including 

significance pruning [16] prior to SS, or a better edit distance 

(e.g., weighted Levenshtein). One could apply principal 

component analysis (PCA) or related techniques to infer 

hidden structure in the bilingual semantic space, thus 

exploiting information from the neighbours of the neighbours 

of a phrase. External linguistic resources could be used to find 

more, better NNs for phrases. Finally, SS could be 

reformulated as a feature-based model, so the space of 

alternatives (metrics, number of NNs, discounting, etc.) could 

be explored more systematically.  
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