@inproceedings{li-etal-2014-discriminative,
title = "A discriminative framework of integrating translation memory features into {SMT}",
author = "Li, Liangyou and
Way, Andy and
Liu, Qun",
editor = "Al-Onaizan, Yaser and
Simard, Michel",
booktitle = "Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: MT Researchers Track",
month = oct # " 22-26",
year = "2014",
address = "Vancouver, Canada",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2014.amta-researchers.19",
pages = "249--260",
abstract = "Combining Translation Memory (TM) with Statistical Machine Translation (SMT) together has been demonstrated to be beneficial. In this paper, we present a discriminative framework which can integrate TM into SMT by incorporating TM-related feature functions. Experiments on English{--}Chinese and English{--}French tasks show that our system using TM feature functions only from the best fuzzy match performs significantly better than the baseline phrase- based system on both tasks, and our discriminative model achieves comparable results to those of an effective generative model which uses similar features. Furthermore, with the capacity of handling a large amount of features in the discriminative framework, we propose a method to efficiently use multiple fuzzy matches which brings more feature functions and further significantly improves our system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2014-discriminative">
<titleInfo>
<title>A discriminative framework of integrating translation memory features into SMT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Liangyou</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andy</namePart>
<namePart type="family">Way</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014-oct 22-26</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: MT Researchers Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michel</namePart>
<namePart type="family">Simard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Combining Translation Memory (TM) with Statistical Machine Translation (SMT) together has been demonstrated to be beneficial. In this paper, we present a discriminative framework which can integrate TM into SMT by incorporating TM-related feature functions. Experiments on English–Chinese and English–French tasks show that our system using TM feature functions only from the best fuzzy match performs significantly better than the baseline phrase- based system on both tasks, and our discriminative model achieves comparable results to those of an effective generative model which uses similar features. Furthermore, with the capacity of handling a large amount of features in the discriminative framework, we propose a method to efficiently use multiple fuzzy matches which brings more feature functions and further significantly improves our system.</abstract>
<identifier type="citekey">li-etal-2014-discriminative</identifier>
<location>
<url>https://aclanthology.org/2014.amta-researchers.19</url>
</location>
<part>
<date>2014-oct 22-26</date>
<extent unit="page">
<start>249</start>
<end>260</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A discriminative framework of integrating translation memory features into SMT
%A Li, Liangyou
%A Way, Andy
%A Liu, Qun
%Y Al-Onaizan, Yaser
%Y Simard, Michel
%S Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: MT Researchers Track
%D 2014
%8 oct 22 26
%I Association for Machine Translation in the Americas
%C Vancouver, Canada
%F li-etal-2014-discriminative
%X Combining Translation Memory (TM) with Statistical Machine Translation (SMT) together has been demonstrated to be beneficial. In this paper, we present a discriminative framework which can integrate TM into SMT by incorporating TM-related feature functions. Experiments on English–Chinese and English–French tasks show that our system using TM feature functions only from the best fuzzy match performs significantly better than the baseline phrase- based system on both tasks, and our discriminative model achieves comparable results to those of an effective generative model which uses similar features. Furthermore, with the capacity of handling a large amount of features in the discriminative framework, we propose a method to efficiently use multiple fuzzy matches which brings more feature functions and further significantly improves our system.
%U https://aclanthology.org/2014.amta-researchers.19
%P 249-260
Markdown (Informal)
[A discriminative framework of integrating translation memory features into SMT](https://aclanthology.org/2014.amta-researchers.19) (Li et al., AMTA 2014)
ACL