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Abstract
A novel variation of modified KNESER-NEY model using monomial discounting is presented
and integrated into the MOSES statistical machine translation toolkit. The language model is
trained on a large training set as usual, but its new discount parameters are tuned to the small
development set. An in-domain and cross-domain evaluation of the language model is per-
formed based on perplexity, in which sizable improvements are obtained. Additionally, the
performance of the language model is also evaluated in several major machine translation tasks
including Chinese-to-English. In those tests, the test data is from a (slightly) different do-
main than the training data. The experimental results indicate that the new model significantly
outperforms a baseline model using SRILM in those domain adaptation scenarios. The new
language model is thus ideally suited for domain adaptation without sacrificing performance
on in-domain experiments.

1 Introduction

Language modeling (Manning and Schütze, 2001) is a central, important, and well-studied
topic in natural language processing because the obtained language models (LM) are used in
many diverse language technology tasks such as machine translation (Koehn, 2010b), speech
recognition, and information retrieval (Manning et al., 2008). Most applied language models
are based on n-grams, which are sequences of n consecutive words. Abstractly speaking, an
n-gram language model represents a probability distribution over sequences of n words. These
distributions are typically obtained with the help of maximum likelihood estimation (MLE)
from large monolingual corpora. However, they are smoothed to move probability mass to
n-grams that are infrequent or unseen in the training data. The most popular smoothing method
in statistical machine translation is the modified KNESER-NEY model by Chen and Goodman
(1996), which is implemented in language model toolkits such as SRILM by Stolcke (2002)
and KenLM by Heafield (2011).

To accommodate rare n-grams, the relative frequencies of n-grams in the training data
are slightly discounted. Here we replace the discounting used in the modified KNESER-NEY
model by a monomial discounting. This modification allows a simple adjustment (i.e., tuning)
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of the obtained language models (via their discount parameters) to different domains via a stan-
dard tuning step (similar in principle to the parameter optimization used in statistical machine
translation). Our new model is trained on a large monolingual corpus as usual, but its discount
parameters are tuned to a small development set, which usually coincides with the tuning set
used to tune the parameters of the machine translation system. We demonstrate that very little
development data is sufficient to achieve good performance.

In general, an accurate estimation of cross-domain n-grams is difficult to achieve with only
knowledge about in-domain n-grams because even huge in-domain training data is typically
insufficient to combat cross-domain data sparseness. The standard solution interpolates the
large trained LM with an additional (usually small) LM for the target domain. Our model can
utilize both types of data in a single model because the tuning step of our monomial discounting
model offers a natural way to adapt it to a new domain. The basic n-gram probabilities are
trained using the large amount of background training data, but the new discount parameters
are adjusted using data from the target domain. The tuning is driven by perplexity (Jelinek
et al., 1977) as a standard measure of language model performance. We optimize the discount
parameters such that the perplexity is optimal on the development data using a simple grid
search (for our two discount parameters). In experiments we observe that the LM perplexity
does not deteriorate compared to the baseline, which is a modified KNESER-NEY model as
implemented in SRILM. This applies to both the in-domain as well as the cross-domain setups.
More precisely, we observe solid improvements in the cross-domain setups and comparable
(i.e., the same) performance in in-domain setups. In addition, our model can still be interpolated
with a domain-specific LM to improve it even further.

Perplexity is a rather synthetic measure and does not necessarily correlate well with the
performance of downstream tasks, such as statistical machine translation, that utilize language
models. Consequently, we also confirm the benefits of our new language model with the help of
an evaluation of statistical machine translation performance on medium-scale translation tasks
(incl. Chinese-to-English and English-to-German). In these experiments we compare our new
domain adaptation LM using monomial discounting to the well-known modified KNESER-NEY
model that is implemented in both SRILM and KenLM. As translation models we use the pop-
ular phrase-based model (Zens et al., 2002) and the hierarchical phrase-based model (Chiang,
2005), which are both implemented in MOSES (Koehn et al., 2007). The obtained experimental
results indicate that systems using our language model significantly outperform the baselines
that use the SRILM language model. The improvements are particularly pronounced in domain
adaptation scenarios. Only in the biological domain for English-to-German translation we ob-
serve no improvements at all, but in this case the overall translation quality (and the trained
translation model) is potentially too poor to yield reasonable translations, so that the impact of
the language model might be minimal.

In summary, we present a small monomial discounting LM, which can easily be tuned to
new domains and is thus ideally suited for domain adaptation. This is achieved by optimizing
the LM discount parameters on a small target domain corpus. In our experiments, we compared
the LM performance of our model to the LM of the popular toolkits SRILM and KenLM. It
shows that our language model works well on in-domain as well as cross-domain data. We
implemented our model as a new LM in the MOSES statistical machine translation framework
of Koehn et al. (2007) and evaluated our model on several major translation tasks. In those
experiments we observed significant improvements in most cross-domain translation setups.

2 Related Work

There exists a wealth of different language models and evaluations of them, so we can only
recall the basic antecedents of our work. Kneser and Ney (1995) presented a extension
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of absolute discounting method and thereby established the popular KNESER-NEY models.
Chen and Goodman (1996) proposed the modified KNESER-NEY model in their study, which
quickly became the dominant n-gram language model. In addition, they already noted that
interpolation generally works better than backoff. Brants et al. (2007) contributed stupid
backoff, which is slightly cheaper to estimate. Finally, Schütze (2011) proposed a recursive
DUPONT-ROSENFELD model with polynomial discounting by interpolating class-based distri-
butions (Brown et al., 1992) with the lower-order distributions. These models achieved im-
provements in perplexity when compared to the modified KNESER-NEY models. A simple
and general scheme for the adaptation of stochastic language models was already presented by
Kneser and Steinbiss (1993). Their adaptation method was used to improve a bi-gram language
model.

Corresponding to the wealth of language models, there is also a wealth of implementa-
tions of them. We only mention IRSTLM by Federico et al. (2008) and MSRLM by Nguyen
et al. (2007), which both implement several language models. We implemented our model in
SRILM by Stolcke (2002). In our experiments we compare our model against the modified
KNESER-NEY models implemented in SRILM and additionally KenLM, which is the recom-
mended language model in the MOSES framework. SRILM is a popular toolkit for building
and applying statistical n-gram-based language models and is used in speech recognition, sta-
tistical tagging and segmentation, and statistical machine translation. SRILM offers methods
to compute the optimal interpolation weights for the corresponding domain models. Heafield
(2011) contributed a scalable variant of the modified KNESER-NEY model that does not rely on
pruning. KenLM was already evaluated in a statistical machine translation setup and significant
improvements in terms of BLEU (Papineni et al., 2002) were observed (Heafield et al., 2013) at
the expense of much larger language models.

3 Language Models

In this section, we recall the commonly used modified KNESER-NEY model (KN model), which
is also used in our contrastive systems, and introduce the monomial discounting that we add to
the KN models. This type of discounting was originally proposed for the POLKN models by
Schütze (2011). Naturally, we also present the newly obtained KN models with monomial
discounting in detail, which we will evaluate later on.

3.1 Modified Kneser-Ney model

The modified KN model was proposed by Chen and Goodman (1996). We present the general
formulation for an n-gram language model. The model parameters are estimated on the training
set, from which we extract occurrence counts c(w) for all sequences w ∈ Σ≤n of length at
most n, where Σ is our lexicon. Given w ∈ Σk with k ≥ 1, we let tail(w) be the sub-sequence
excluding just the first position; i.e., if w = σ1 · · ·σk, then tail(w) = σ2 · · ·σk. Instead of a
single discount parameter D (or a constant function D), they proposed to use three discount
parameters D1, D2, D3. More precisely, for every n ≥ 1, σ′ ∈ Σ, and w′ ∈ Σn−1, let

p
(n)
KN (σ′ | w′) =

c(w′σ′)−D(c(w′σ′))

c(w′)
+ γ(n)(w′) · p(n−1)

KN (σ′ | tail(w′))

D(k) =


0 if k = 0

D1 if k = 1

D2 if k = 2

D3 otherwise
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where, to make the distribution sum to 1, they set

γ(n)(w′) =

∑
k≥0D(k) · |{σ ∈ Σ | c(w′σ) = k}|

c(w′)
.

Kneser and Ney (1995) developed an estimate for the optimal value of their discount parame-
terD, and Chen and Goodman (1996) derived the analogous values for the modified KN-model:

D∗i = i− (i+ 1)
n1ni+1

n1ni + 2n2ni

with i ∈ {1, 2, 3}, where ni = |{w ∈ Σn | c(w) = i}| is the number of n-grams that appear
exactly i times in the training data.

3.2 Our Model
In our monomial-discount domain-adaptation n-gram-based language model, we use exactly
the same general approach as in the modified KN-models, but we replace the discount function
by the monomial discount. Schütze (2011) proposed a polynomial discounting mechanism
originally for his POLKN models with the intuition that the ideal discount D(k) in the model
should grow monotonically with k. More precisely, he replaced the KN-discount D by the
discounting functionE given for two discount parameters ρ and γ byE(k) = ρ·kγ . Informally,
the parameter γ controls the rate of growth of the discount as a function of k, and the parameter ρ
is a classical discount factor that can be scaled for optimal performance. We assume that 00 = 0,
so E(0) = 0.

We generally compute the nth-level conditional probability p(n)
DA (σ′ | w′) given the occur-

rence counts c(w′σ′) and c(w′) =
∑
σ∈Σ c(w

′σ). In particular, we only consider lower-order
levels if the n-gram was not seen in the training data (following backoff models). Note that
we do not distinguish whether an n-gram occurs once or twice. The only remaining distinction
is whether an n-gram occurs or not. Naturally, the number of occurrences modifies the dis-
count E. We denote our tunable language model pDA and define it for every n ≥ 1, σ′ ∈ Σ, and
w′ ∈ Σn−1 as follows.

p
(n)
DA (σ′ | w′) =


c(w′σ′)−E(c(w′σ′))

c(w′) if c(w′σ′) 6= 0

β(w′) · p(n−1)
DA (σ′ | tail(w′)) otherwise.

To make the distribution sum to 1, we let

β(w′) =

∑
σ∈ΣE(c(w′σ))

c(w′)
·
( ∑
σ∈Σ: c(w′σ)=0

p
(n−1)
DA (σ | tail(w′))

)−1

.

Overall, this LM is a simple, recursive model with monomial discount. We use a simple backoff
scheme distinguishing only occurring and non-occurring n-grams. The discount parameters
ρ and γ are optimized on a development set before we apply the model. For this tuning step we
use heuristic grid search.

To apply our LM to a sentence, we simply multiply the conditional probabilities obtained
for the various windows as usual. Let w = σ1 · · ·σk be the input sentence. Then

p
(n)
DA (w) =

k∏
i=1

p
(n)
DA (σi | σi−k+1 · · ·σi−1) ,
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Figure 1: In-domain distribution.
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Figure 2: Cross-domain distribution.

where σ` = NULL for all ` ≤ 0. The same NULL-tokens are also used in the counts c(w).
While the idea of the monomial discount derives from the POLKN model by Schütze

(2011), which is a class-based interpolation model, we apply it without classes as a backoff
model. Without the classes, our LM only relies on n-grams and is thus cheaper and easier to
generate in ARPA format, which can be processed by SRILM. Since our goal was a tunable
LM that can be used for domain adaptation in machine translation, our model needs to be
compatible with a toolkit that is supported by the MOSES framework. We selected the SRILM
toolkit, which can import our LM given in ARPA format. Naturally, our model can be used
for different n-gram orders. An implementation of a class-based model or interpolation models
remains future work.

3.3 Parameter Optimization
Our model has two discount parameters: ρ and γ. As already mentioned, we use a tuning step
with a small amount of development data to set those parameters. We use perplexity (Jelinek
et al., 1977) as the measure of language model performance. In natural language processing,
perplexity is the inverse probability of the test set, normalized by the number of words (i.e., the
inverse of the geometric mean of the individual word predictions). Let w be a test sentence.
We assume that a language model p estimates the probability p(w′) of each sequence w′. The
perplexity of the LM p on the test sentence w is then defined to be

Perplexity(p, w) =
(

|w|
√
p(w)

)−1

.

Consequently, lower perplexity means that the LM is better at predicting the individual words
in the test sentence.

Now that we have established our target function, we simply use heuristic grid search
to optimize our parameters. More precisely, the parameters ρ and γ are selected from the
range (0, 1), and we explore the search space for the optimal discounting parameters with step-
size 0.01 and map all the development set perplexities to a grid. To simplify this procedure, we
start with step-size 0.1, which yields 81 settings in the straightforward way. Figures 1 and 2
show the perplexities of the development set in those 81 settings. In this way, we obtain the best
general areas (brighter is better), for which we then lower the step-size to 0.01 to fine-tune the
parameters. We found that even finer step-sizes (such as 0.001) have no effect on performance
since the perplexities converge beforehand.

The obtained parameter space looks rather smooth, so we expect our obtained parameters
to be close to optimal. We can naturally imagine more refined search methods for the ideal pa-
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Language Domain Training Development ρ γ
English in-domain WSJ WSJ 0.61 0.03
Chinese in-domain MultiUN MultiUN 0.59 0.10
German in-domain EuroParl EuroParl 0.65 0.11
English cross-domain MultiUN NIST 0.63 0.59
Chinese cross-domain MultiUN NIST 0.64 0.57
German cross-domain EuroParl khreshmoi 0.75 0.54

Table 1: Parameters of the our models. The corpora are presented in Table 2.

rameters, but we do not expect major improvements since our parameters should be almost op-
timal, whereas traditional methods often only yield local optima. The optimized parameters for
different domains are shown in Table 1. As expected, we observe a drastic change of the parame-
ter values for γ comparing the in-domain scenario (English: 0.03; Chinese: 0.10; German: 0.11)
to the cross-domain scenario (English: 0.59; Chinese: 0.57; German: 0.54). Thus in the cross-
domain scenario, our model reserves more probability mass for the unobserved n-grams in
comparison to the in-domain scenario and the modified KNESER-NEY models. The parameters
for the German cross-domain LM are particularly large (ρ = 0.75 and γ = 0.54). We can only
speculate that the huge difference between the training set (European Parliament proceedings)
and the development set (bio-medical data) needs huge discounts to allow for many unseen
n-grams. Surprisingly, the cross-domain parameters for English (ρ = 0.63 and γ = 0.59) and
Chinese (ρ = 0.64 and γ = 0.57) are very similar. Further evaluations are necessary to detect a
trend here, so at present, we do not know the significance of this observation. However, we can
observe that high γ-values generally indicate a domain change between the training set and the
development set.

Finally, we performed a series of experiments to establish reasonable sizes for the develop-
ment set. To this end, we optimized the discount parameters for different sizes of the develop-
ment set. Figures 3 and 4 show the obtained perplexity on the test set for English in relation to
the size of the development set. If the development set is tiny (≤ 10 sentences), then we cannot
find reasonable discount parameters. However, already at sizes of 20–50 sentences, we find op-
timal discount parameters that yield very good perplexities also on the test set. For example, in
the in-domain experiment we just need 20 sentences to find the parameters ρ = 0.6 and γ = 0.1.
With those parameters, we achieve the perplexity 92.32 on the test set, which is already better
than standard SRILM, which achieves 92.42. It might be argued that our model had access to
additional training examples, but adding, for example, 100 sentences of the development set
to the training set for the SRILM models does not influence their perplexity (92.42) since the
training data is huge (1.6 million sentences) in comparison to those 100 sentences. In summary,
the very small development data does not help as additional training data, but it is enough for
our model to optimize the discount parameters, which offer an alternative way to improve the
performance. The same observations are true for the cross-domain experiments (and the other
languages). In all cases, approximately 100 sentences are sufficient to discover good discount
parameters.

3.4 Domain Adaption

We already mentioned that even huge in-domain training data is typically insufficient to combat
cross-domain data sparseness. In addition, we have seen that adding the cross-domain devel-
opment set to the training set is ineffective for small development sets. The standard solution
to this problem interpolates the LM for the training set with an additional LM for the target
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Figure 3: In-domain optimization.
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Figure 4: Cross-domain optimization.

domain. These mixture models weight the individual LM and these weights are tuned on the
development set. This approach utilizes both types of data independently, which can be bene-
ficial. However, it requires estimating an LM for the target domain, which requires substantial
training data in the target domain to be effective. In our setups, in which the target domain de-
velopment set is small (few thousand sentences), this approach is ineffective since the obtained
target domain LM is not useful enough. In contrast, our method only needs to optimize the dis-
count parameters on the development data. Recall that we do not update the occurrence counts
of the n-grams. In addition, we actually only need a very small development set (100 sen-
tences) to optimize our discount parameters. It is known that such very small development sets
do not help the other models. To confirm these statements, we ran a preliminary experiment.
We did not observe any improvements using interpolation with a target domain LM trained on
less than 2,000 sentences. In addition, at 2,000 sentences our model still outperforms the inter-
polated models in terms of test set perplexity. Moreover, the same interpolation approach can
be applied to our model, and we observe the same improvements as the development set size
increases beyond 2,000 sentences.

4 Experimental Setup

4.1 Corpora

We perform two experiment types: (i) language model experiments for English, Chinese, and
German evaluated by perplexity as well as (ii) machine translation experiments for the two
language pairs English–Chinese and English–German evaluated by BLEU (Papineni et al.,
2002). We summarize the used corpora in Table 2.

For the machine translation experiments on English–Chinese, we use the special
IWSLT 2011 release of the sentence-aligned MultiUN corpus of Eisele and Chen (2010) as
training data. It is a multilingual parallel corpus extracted from official documents published
by the United Nations from 2000 to 2009. This corpus is available in German and all 6 official
languages of the United Nations. It contains roughly 300 million words per official language.
We use 2 million Chinese–English sentence pairs as training data (48,933,848 English tokens
and 47,222,992 Chinese tokens) from the special release provided for IWSLT 2011. For tuning
and testing we use the official NIST data provided by LDC (catalog numbers LDC-2010-T10,
· · · -T12, · · · -T14, · · · -T17, and · · · -T21). Note that our test sets contain multiple reference
translations. The NIST data consists of Chinese news-wire documents, human transcriptions of
broadcast news as well as web newsgroup documents. Obviously, the domains of the MultiUN
and the NIST data are quite different.
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Corpus Domain Usage Sentences Lang. Tokens

Wall Street Journal news training 1,634,529 English 39,027,486

MultiUN official training 8,820,000 English 215,096,536
documents Chinese 206,668,165

NIST 2002, -4, -6 news tuning 4,139 English 503,305
Chinese 104,228

NIST 2005 news test 1,082 English 139,144
Chinese 30,060

NIST 2008 news test 1,859 Chinese 188,402
English 45,700

EuroParl parliament training 1,886,260 English 50,406,502
proceedings German 47,992,387

News Commentary news training 200,112 German 5,020,146

Common Crawl web training 2,376,881 German 51,889,104

khreshmoi medical, tuning 500+1,000 English 10,350+21,450
biology +test German 9,924+20,810

Table 2: Used corpora (parts of the tuning data serve as development data for the LM).

The corresponding experiments for English-to-German use all data present in EuroParl
version 7 of Koehn (2010a) as training data. EuroParl contains the proceedings of the European
parliament in 21 European languages. We use three corpora as training data for the German LM:
EuroParl version 7, News Commentary and Common Crawl. The News Commentary corpus
contains news text and commentaries from Project Syndicate. It is provided as training data
for the shared tasks offered by the workshop on statistical machine translation (WMT). The
Common Crawl corpus, which was collected from web sources, was provided as a new data
resource for WMT 2013. As tuning and test data we use the bio-medical data of the khreshmoi
project provided by the WMT 2014 shared task. Again, the domains of the training data and
tuning and test data are vastly different.

4.2 Setup

As contrastive language models we use the standard modified KN language models provided
by the toolkits SRILM of Stolcke (2002) and KenLM of Heafield et al. (2013). KenLM uses a
no-pruning strategy, which it compensates for with its high efficiency allowing it to handle the
resulting large models. Since our model works essentially as the models in SRILM, which relies
on pruning to reduce the size of the models, we select the modified KN model implemented in
SRILM as baseline. We currently employ the same pruning strategy as SRILM, so our models
are small compared to models of KenLM and have essentially the same size as the standard
SRILM models. It remains to be seen whether the reported advantages can also be obtained
using a no-pruning strategy as in KenLM together with our model. For completeness’ sake, we
also report scores for other models.

All systems are used to generate 5-gram language models in ARPA format. We use the
full monolingual data available in the training corpus (e.g., 8.8 million English sentences from
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ENGLISH CHINESE
Model Size Perplexity Size Perplexity

Toolkit Smoothing Method in GB Dev. Test in GB Dev. Test
IRSTLM improved KN 208.6 102.54 102.44 179.2 92.49 94.67
KenLM interpolated mKN 621.2 91.41 91.53 483.4 82.89 86.11
SRILM backoff mKN 217.7 94.38 94.34 187.2 84.08 85.31
SRILM interpolated mKN 217.8 92.48 92.42 187.0 82.52 83.95
SRILM our 217.2 92.37 92.32 187.1 83.00 84.58

Table 3: Perplexity and size of the improved Kneser-Ney, interpolated modified Kneser-Ney,
backoff version of modified Kneser-Ney and our models on the in-domain data.

MultiUN). Our language model is implemented as a variant of SRILM that implements the dif-
ferent discounting. Our implementation is available on the homepage of the first author (JUNFEI
GUO). As mentioned earlier, we use heuristic grid search with step size 0.01 during tuning to
discover the optimal discount parameters (see Section 3.3) for our model. An illustration of the
results of such a search is presented in Figure 1 and 2.

All the machine translation experiments use the MOSES framework of Koehn et al. (2007).
It offers support for phrase-based and hierarchical phrase-based translation models and contains
all tools needed to train and execute these models. In particular, it supports the ARPA format
of our language models. The word segmentation of the Chinese sentences was achieved with
the Stanford Word Segmenter of Chang et al. (2008). GIZA++ (Och and Ney, 2003) with the
heuristic grow-diag-final-and (Koehn et al., 2005) was used to obtain the word alignments.
All the translation models were trained on approximately 1.8 million parallel sentences after
standard length-ratio filtering. They were tuned using MERT (Och, 2003) on their respective
tuning sets using BLEU (Papineni et al., 2002) as score, which is also the score that we report
for the test sets. Finally, the pairwise bootstrap resampling method of Koehn (2004) is used for
significance testing.

5 Language Model Perplexity Experiments

First we evaluate the various language models in isolation using perplexity (Jelinek et al., 1977).
Since the new feature of our model is the ability to tune the discount parameters, we perform
two types of experiments: in-domain and cross-domain. In the in-domain experiments, the
tuning and test data are similar to the training data, whereas in the cross-domain scenario the
tuning and test data are still similar, but different to the training data. Obviously, we focus on
cross-domain experiments since we expect our model to perform well there. A summary of the
obtained results (together with the model sizes) is presented in Tables 3 and 4 for the in-domain
and the cross-domain scenario, respectively.

5.1 In-domain
The first experiment investigates the performance of the different language models on in-domain
(news) data from the Wall Street Journal. The training set contains more than 1.6 million sen-
tences and both the validation and the test set have roughly 100,000 sentences. We use the same
number of sentences for Chinese from the MultiUN corpus. Table 3 shows the performance of
the language models (measured by perplexity) together with their size. The IRSTLM models,
which are simplified versions of the improved KN model, are the smallest in size, but have the
highest (i.e., worst) perplexity. The large unpruned KenLM models have the lowest perplexities
for English, but at the expense of significantly larger sizes. The SRILM models using backoff
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ENGLISH CHINESE GERMAN
Perplexity Perplexity Perplexity

Toolkit Size Dev. Test Size Val. Test Size Dev. Test
KenLM 9.40 296.51 317.94 11.26 950.07 840.15 10.20 613.69 658.86
SRILM 2.20 289.92 312.30 2.20 729.40 639.42 1.29 471.39 501.28
our 2.19 271.20 286.53 2.20 669.16 584.79 1.27 442.15 469.78

Table 4: Perplexity and size (in GB) of the models on the cross-domain data.

(without interpolation) score consistently worse than those using interpolation, which was al-
ready observed by Chen and Goodman (1996). Our model (without interpolation) outperforms
the SRILM interpolated models for English (92.48 vs. 92.37 and 92.42 vs. 92.32 on the devel-
opment and test set, respectively), but is beaten by the KenLM models (91.41 vs. 92.37 and
91.53 vs. 92.32 on the development and test set, respectively). Overall, the differences between
these models are rather small. In the Chinese experiments we observed similar performances.
IRSTLM models are again the worst in terms of perplexity, and our model performs slightly
worse than SRILM models with interpolation but always better than SRILM models with back-
off only. Overall, these results suggest that in-domain our monomial discount model achieves
the same performance as the modified KN models implemented in SRILM when using interpo-
lation. Consequently, in all other experiments we use SRILM models with interpolation, which
is also recommended for use in MOSES.

5.2 Cross-domain
For the cross-domain experiments we use three languages: English, Chinese, and German.
The results are reported in Table 4. Before we discuss the results, let us quickly describe the
experiments (see Table 2).

• For the English experiment, we train the language models on the English data of the Mul-
tiUN corpus of Eisele and Chen (2010), which contains roughly 8.8 million sentences.
For the cross-domain evaluation, we use NIST data, which includes news-wire, broad-
cast news, and web data, so it is quite different (in style and language) from the contract
documents contained in MultiUN.

• For the Chinese experiment, we use the same resources, but now the Chinese data con-
tained in those corpora.

• For the German experiment, which we did in order to cover a morphologically rich lan-
guage, the language models are trained on EuroParl version 7, News Commentary, and
the Common Crawl corpus (overall 4.4 million sentences). We use the khreshmoi data for
development and test. The data in khreshmoi were sampled from summaries of English
medical documents.

Comparing the perplexities reported in Tables 3 and 4, we immediately observe that they
increase from ≤ 100 to ≥ 200 (sometimes a lot more), which shows that the cross-domain de-
velopment and test data is rather different from the training data. The results in Table 4 indicate
that our model can achieve considerable perplexity improvements for cross-domain data. While
our models retain the size of the models generated by SRILM, we often improve the perplexity
(English: from 312.30 to 286.53; Chinese: from 639.42 to 584.79; and German: from 501.28
to 469.78). For all experiments, the perplexities computed for the development and the test
set are similar because we chose similar validation and test sets. Overall, in all performed ex-
periments, our model outperforms both the modified KN model in SRILM and KenLM (both
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Language CHINESE→ ENGLISH ENGLISH→ CHINESE ENGLISH→ GERMAN
model PBMT HPBMT PBMT HPBMT PBMT HPBMT
KenLM 20.59* 21.12* 17.06 17.97* 13.99 13.95
SRILM 20.05 20.64 17.04 17.68 13.83 13.92
our 20.35* 20.95* 17.41* 17.94* 13.85 13.96

Table 5: BLEU-scores for the various translation experiments. Stars indicate significant im-
provements over the baseline SRILM (at confidence level 95%).

using interpolation). The models produced by KenLM are generally much larger (> 9 GB) than
the models produced by SRILM or our variant (< 3 GB). We report the perplexity results for
KenLM in this experiment since KenLM models are very popular in machine translation. Since
KenLM does not prune, the KenLM models have larger vocabularies, which can be both benefi-
cial and harmful. This might be an explanation for the poor perplexities that the KenLM models
achieve. The tuning of the discount parameters in our model on the cross-domain development
set seems to help our model adapt well to the new domain. Together with the results from the
in-domain experiment, we can conclude that our model seems to perform as well as SRILM
on in-domain data and outperforms SRILM on cross-domain data. The improvements are more
pronounced the more distant the development and test data is from the training data.

6 Machine Translation Experiments

Following our LM perplexity experiments, we also want to confirm that the theoretical advan-
tage that our model enjoys in terms of perplexity translates into an application area. Here we
select statistical machine translation as an application, so we want to confirm that systems using
our model achieve better BLEU-scores (Papineni et al., 2002) in a variety of translation tasks.
We compare the different language models on both the phrase-based translation models [PBMT]
by Zens et al. (2002) and the hierarchical phrase-based translation models [HPBMT] of Chiang
(2005). Both types of translation models are implemented in MOSES toolkit of Koehn et al.
(2007). The results of our evaluation are reported in Table 5.

For the Chinese-to-English experiments, we use roughly 2 million sentence pairs from the
MultiUN corpus and the tuning and test data consists of the classical NIST data. Overall, the
models supported by KenLM achieved the best BLEU scores and significantly beat the SRILM-
based baseline, but they do not significantly outperform the models supported by our new lan-
guage model. Together with our new language model, both the phrase-based and the hierar-
chical phrase-based models significantly outperform the SRILM-based baselines (from 20.05
to 20.35 for PBMT and from 20.64 to 20.95 for HPBMT). In this experiment, our improvement
in terms of perplexity compared to the SRILM-based baseline translates well into an advan-
tage in BLEU-score. This is not true for the perplexity advantage compared to KenLM-based
models, which achieve even (insignificantly) better BLEU-scores despite worse perplexity.

For the experiments translating English to Chinese, we use the same training data, but the
NIST 2008 test data, which has multiple Chinese references. The results (see Table 5) show a
similar picture with one exception. The phrase-based model did not benefit from KenLM and
achieves the same performance as the SRILM-based model. Otherwise, KenLM-based models
and models based on our new language model achieve similar performance and both signifi-
cantly outperform the SRILM-based baseline. For our models, the scores consistently improve
(from 17.04 to 17.41 for PBMT and from 17.68 to 17.94 for HPBMT). Due to the particularity
already mentioned, we even significantly outperform the KenLM-based phrase-based model in
this task. So far, our perplexity improvements consistently yielded improvements in translation
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quality when measured by BLEU.
Finally, we run experiments translating English to German. In this case, the training data is

EuroParl and the tuning and test sets are from the WMT 2014 bio-medical data khreshmoi. The
results of Table 5 show minute differences, of which none are significant. In this machine trans-
lation task, we observe no significant improvements in translation quality (measured by BLEU)
even though we observed sizable LM improvements in terms of perplexity. The huge differ-
ence between the training set (European Parliament proceedings) and the test set (bio-medical
data) might be the reason. The overall translation quality is very poor and potentially too poor
to yield reasonable translations, which allows us to speculate that the impact of the language
model might be minimal in this setup.

Overall, we demonstrated that our new language model does not harm the translation qual-
ity, but rather offers significant improvements in a number of cases. However, the improvements
in terms of perplexity do not necessarily translate into BLEU-score improvements. Neverthe-
less, we often significantly outperformed SRILM-based models in cross-domain evaluations,
which shows a nice benefit of our new language model.

7 Summary

In this paper, we introduced a tunable language model which can easily be tuned to new domains
and is thus ideally suited for domain adaptation. Perplexity shows that our model outperforms
the baseline model especially in domain adaptation scenarios. We implemented our model as a
new language model in the MOSES statistical machine translation framework and evaluated it
in machine translation task. Also there we observed significant improvements.

In future work we plan to improve the parameter optimization algorithm and implement
our model with interpolation. We would also like to investigate translation from German to
English and apply our model to other morphologically rich target languages.
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