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The lexicon of any natural language encodes a huge number of distinct
word meanings. Just to understand this article, you will need to know
what thousands of words mean. The space of possible sentential mean-
ings is infinite: In this article alone, you will encounter many sentences
that express ideas you have never heard before, we hope. Statistical
semantics has addressed the issue of the vastness of word meaning
by proposing methods to harvest meaning automatically from large
collections of text (corpora). Formal semantics in the Fregean tradi-
tion has developed methods to account for the infinity of sentential
meaning based on the crucial insight of compositionality, the idea that
meaning of sentences is built incrementally by combining the meanings
of their constituents. This article sketches a new approach to seman-
tics that brings together ideas from statistical and formal semantics
to account, in parallel, for the richness of lexical meaning and the
combinatorial power of sentential semantics. We adopt, in particular,
the idea that word meaning can be approximated by the patterns of
co-occurrence of words in corpora from statistical semantics, and the
idea that compositionality can be captured in terms of a syntax-driven
calculus of function application from formal semantics.
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1 Introduction

Semantic compositionality is the crucial property of natural language
according to which the meaning of a complex expression is a function
of the meaning of its constituent parts and of the mode of their com-
bination. Compositionality makes the meaning of a sentence such as
“carnivorous plants digest slowly”, in (1), a function of the meaning of
the noun phrase “carnivorous plants” combined as a subject with the
meaning of the verb phrase “digest slowly”, which is in turn derived by
the combination of the meaning of the verb digest and a modifier, the
adverb slowly.

(1) S

VP

Adv

slowly

VP

V

digest

NP

N

plants

Adj

carnivorous

Together with the property of syntactic recursivity, which grants
humans the possibility of constructing indefinitely long grammatical
sentences, semantic compositionality allows us to compose arbitrarily
complex meanings into sentences, and extract meanings from arbitrarily
long and complex sentences, starting from a finite lexicon.

While the compositional nature of human language has been in some
sense acknowledged since Aristotle’s subject-predicate distinction, it
has been brought to the foreground only in modern times, mainly with
the work of the German logician Gottlob Frege (hence the alternative
name Frege’s Principle, see especially Frege 1892).2 Compositionality
was later operationalized by Richard Montague (see in particular Mon-
tague 1970b, 1973). Together with the assumption that meaning can be
accounted for denotationally (that is in terms of whether a linguistic
utterance is truthful with respect to a model of the world) composi-
tionality has since informed the whole area of theoretical linguistics

2As Emilano Guevara and Dominic Widdows (p.c.) point out, surprisingly, the
principle was never explicitly stated by Frege (Pelletier 2001), and it was arguably
already assumed by Boole (1854) decades before Frege’s work. We will stick to the
traditional name despite its historical inaccuracy.
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known as natural language semantics or formal semantics (see Partee
2004, and Werning et al. 2012 for a broad overview of compositionality
covering the application of the principle also in general cognition and
computer science).3

Compositionality is well-known not to apply in expressions such as
“red herring” or “kick the bucket”, whose dominant, idiomatic mean-
ings have nothing to do with fish or pail-hitting. However, even in these
cases a ‘literal’, compositional route cannot be blocked (i.e., these ex-
pressions could be used, and understood, as descriptions of a real her-
ring dyed red, the kicking of a real bucket, etc.). This suggests that the
compositional mode of meaning construction is a primitive in human
language, and a crucial ingredient in any theory that tries to model the
way humans use language.

Consider again the schematic binary tree structure in (1). Most
(though not all) theories of sentential semantics implement composi-
tionality by building meanings bottom-up. Moving from the lexicon,
(here digest, carnivorous, plants and slowly), which can be retrieved
from memory, they follow the syntactic tree up to the main clause (S ),
combining pairs of sister nodes (both lexical, like [carnivorous plants]
and non-lexical, like [NP VP]) by means of a small set of primitive
operations, possibly just one, function application. In function applica-
tion, one of two sister nodes is treated as a function and applied to the
other to return the meaning of their mother node, which can in turn
be an argument or a function in further combinations (see Heim and
Kratzer 1998, for a thorough introduction to the function application
approach to composition).

This general line of research, split into many di↵erent strands and
flavours which will not concern us here, has enjoyed a great success in
terms of constructions covered and depth of the explanation, generating
thorough descriptions of the behaviour of quantifiers and articles, long-
distance dependencies, coordination and comparatives, and many other
individual phenomena most often linked to the lexicon of grammatical
elements, such as determiners and conjunctions. However, the success
of a scientific enterprise can and ultimately must be measured outside
of a lab. For a semantic theory, which has few products to send out to
the market, this means the ability to give understandable descriptions
of the whole semantic behavior of an arbitrary sentence, which can
easily contain dozens of intertwined semantic phenomena. In contrast,
most semantic studies have dealt with individual constructions, and

3Following standard practice, in this article we sometimes use the term denota-
tional semantics synonymously with formal semantics, especially when we want to
emphasize the denotational side of the latter.
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have been carried out under highly simplifying assumptions, in true
lab conditions. If these idealizations are removed it is not clear at all
that modern semantics can give a full account of all but the simplest
sentences.

Consider for instance the problem of lexical ambiguity: Nearly all
papers in formal semantics start from the assumption that all the words
in the examples under study have been neatly disambiguated before
being combined. But this is not an innocent or easy assumption. To
evaluate the truth or falsity of (2)in a model, one would have to assume
that paper is not the material, but the text in a certain page format
(and not in a purely abstract sense, as in “his paper has been reprinted
in ebook format”); that runs means something like extends, and not
the running of horses, the running of cars or what Obama did as he
“ran for presidency” (despite the presence of for). In turn, for does not
indicate a goal (“I ran for the exit”), nor a benefactive (one could say:
“in the Olympics, the British team ran for their Queen”, but nobody
would run for a simple page, not even for 105 of them).

(2) This paper runs for 105 pages.

Often, choosing to combine the ‘wrong’ meanings does not lead to
falsity, but to non-sensicality. It is not easy, however, to figure out
which possibilities are odd without trying the semantic combinations,
and many will remain uncertain. With more complex sentences, such
as (3), a wealth of additional complexities emerge: You have to un-
derstand that in this context analysts are technology analysts, that
every actually ranges over a subpart of them, that paid has a special
meaning due to the presence of attention before it, that attention here
means ‘amount of attention’, that unbelievable actually means ‘hard to
believe’, etc.

(3) Every analyst knows that the attention Jobs paid to details was
simply unbelievable.

Even in the limited domain of modification, the variability of mean-
ing that emerges has long been recognized, but its consequences not
always fully appreciated. As Lahav remarks:

In order for a cow to be brown most of its body’s surface should be brown,
though not its udders, eyes, or internal organs. A brown crystal, on the other
hand, needs to be brown both inside and outside. A book is brown if its cover,
but not necessarily its inner pages, are mostly brown, while a newspaper is
brown only if all its pages are brown. For a potato to be brown it needs
to be brown only outside. . . Furthermore, in order for a cow or a bird to
be brown the brown color should be the animal’s natural color, since it is
regarded as being ‘really’ brown even if it is painted white all over. A table,
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on the other hand, is brown even if it is only painted brown and its ‘natural’
color underneath the paint is, say, yellow. But while a table or a bird are
not brown if covered with brown sugar, a cookie is. In short, what is to be
brown is di↵erent for di↵erent types of objects. To be sure, brown objects do
have something in common: a salient part that is wholly brownish. But this
hardly su�ces for an object to count as brown. A significant component of
the applicability condition of the predicate ‘brown’ varies from one linguistic
context to another. (Lahav 1993:76)

What happens with brown is replicated in the large majority of adjec-
tive-noun combinations. Treating them all like ‘idioms’ would turn the
exception into the rule. After all, there must be many regularities in
their combinatorial behaviour, or children would not be able to learn
modification correctly, and indeed semanticists have long recognized
that many cases of context-driven polysemy are systematic (on the
notion of regular polysemy see, e.g., Apresjan 1974; Pustejovsky 1995).

Add to this that the meaning of abstract terms has only begun to be
investigated by formal semantics (what is the denotational meaning of
numerosity or bravery?), and the outlook for a semantic analysis that
can span real-life sentences and not just sterilized constructions starts
to look not particularly promising.

As is easy to see, many of the problems come from the lexicon of
content words, such as nouns, verbs and adjectives, and not from gram-
matical terms. Content words constitute the area of the lexicon with the
greatest amount of items (by the end of high-school, an average Western
person might know the meaning of as many as 60,000 content words, see
Aitchison 1993), characterized by a lot of idiosyncratic meaning com-
binations. Of course, there have been important attempts to tackle the
lexicon problem from the point of view of formal semantics, like Puste-
jovsky’s (1995) theory of the generative lexicon. More recently, Asher
(2011) has approached lexical semantics with a theory of predication
that uses a sophisticated system of semantic types, plus a mechanism of
type coercion. This gives an interesting account of di�cult phenomena
that relate to the ambiguity and context-dependent nature of content
words, such as co-predication, exemplified in (4), (where lunch is in-
terpreted as referring to the food in one conjunct and to the event of
eating in the other) or predicate coercion, where a predicate is provided
to ‘fix’ a type mismatch, as in (5).

(4) Lunch was delicious but took forever.

(5) John enjoyed a beer. he enjoyed DRINKING it

However, the problem of lexical semantics is primarily a problem of size:
even considering the many subregularities found in the content lexicon,
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a hand-by-hand analysis is simply not feasible for the thousands of
elements that populate the content word lexicon. For many of these
elements, we would have to manually specify how they are a↵ected
by the context-dependent process of polysemy resolution: from regular
polysemy to non-systematic meaning shifts, down to the co-composition
phenomena illustrated by the citation above (see Section 2.3).Without
such an analysis, the goal of a semantic treatment for actual sentences
rather than abstract constructions remains out of reach.

Similar problems are familiar elsewhere in linguistics. The problem
of assigning reasonable (if not exhaustive) syntactic structures to arbi-
trary, real-life sentences is perhaps equally hard. Here, however, tech-
nology has provided an important part of the answer: Natural language
parsers, which automatically assign a syntactic structure to sentences,
have made great advances in recent years by exploiting probabilistic in-
formation about parts of speech (POS tags) and syntactic attachment
preferences. This in turn has been made possible by the availability of
medium-sized corpora annotated for POS and syntactic information,
such as the Penn Treebank (Marcus et al. 1993), that serve as the basis
for extracting probabilistic information from. Today’s state-of-the-art
parsers can process dozens of unannotated, possibly noisy real-life sen-
tences per second (Clark and Curran 2007; Nivre 2003).4

Learning from pre-annotated data has been less directly applicable
to the goal of providing a semantic representation for sentences because
there are few learning samples marked for meaning (but see Basile
et al. 2012). Moreover, the range, variety and often ‘fuzzy’ nature of
semantic phenomena makes the prospect of manual semantic markup
of text data a lot less appealing than for syntax. As a consequence,
data-driven semantics—which would in principle be a way to address
the vastness of lexical meanings—has not advanced as rapidly as data-
driven syntax.

What sort of data-driven methods could truly help semantics? If the
main problem for the semantics of sentences is the content lexicon, we
should try to find methods that use vast corpora to extract the meaning
of content words and represent them in appropriate ways.5 But these

4The error margin remains high. Its bounds are given by the accuracy of the
structures the parser has learned from. Better structures in the learning sample
should lead to better parsing across the whole corpus to be parsed, and it is possible
that in the future incorporating DS measures in parsing preferences might lead to
better results, perhaps to the point of modeling human garden-path e↵ects. See
Manning (2011) for similar considerations with respect to part-of-speech tagging.

5An alternative approach is to rely on lexical resources that contain rich seman-
tic information about content words (e.g., Baker et al. 1998; Fellbaum 1998; Kipper
et al. 2008). We find the corpus route more appealing because it is not a priori
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meaning representations should be objects that compose together to
form more complex meanings, while accounting for how composition
causes more or less sytematic shifts in word meaning, as in the co-
composition, co-predication and coercion examples above. Moreover,
the meaning of content words as we can extract them from a corpus
should be able to combine with the meaning of grammatical words,
formal semantics’ special focus, in ways that account for the importance
of structure in sentence meaning, and which can shed light also on the
linguistic phenomena that interest the theoretical linguist. This is what
this paper is about. We propose it as a research program for linguistics,
both theoretical and computational, but also as a description of the
thriving subfield of compositional distributional semantics.

As we shall see in the next sections, this field takes a stand which
might be counterintuitive for the formal linguist—that the meaning of
content words lies in their distribution over large spans of text. We
believe that this aspect of meaning is very real and concrete, and that
it complements a denotational approach in which words ‘mean’ the
objects they stand for.

In the remainder of this article, we make our case as follows. Sec-
tion 2 is a concise introduction to distributional semantics, focusing on
its implications for linguistics and cognitive science. Section 3 presents
compositional distributional semantics, and in particular the Fregean
approach to the challenge of composing distributional representations
we endorse. Section 4 contains a brief review of empirical evidence in
favour of our specific proposal, while Section 5 o↵ers more general moti-
vations for the need of a theory of compositional distributional seman-
tics. The emphasis is not on applications, but on what this approach
can bring to a theory of linguistic meaning. Section 6 briefly reviews
some related work that has not been discussed in the previous sections,
or to which we felt the need to return given how closely connected it
is to our. The heroic reader who made it to the end of this unusually
long paper will discover, in our valedictory in Section 7, that we left
so many important issues unaddressed that we are already working on
Part 2.

limited by the amount of manually coded data entered in a resource. Many fuzzy
aspects of word meaning are arguably better captured by the distributional repre-
sentations we are about to introduce than by the hand-coded symbolic formalisms
encoded in lexical resources. Moreover, we hope that the very process of inducing
meaning from naturally occurring data will be very instructive about what meaning
really is, and possibly about how we humans come to possess it.
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TABLE 1: Distributional vectors representing the words dog, hyena and
cat.

dog hyena cat
runs 1 1 4
barks 5 2 0

2 Distributional Semantics

The distributional hypothesis states that words occurring in similar (lin-
guistic) contexts are semantically similar. This idea has its theoretical
roots in various traditions, including American structuralist linguistics,
British lexicology and certain schools of psychology and philosophy
(Firth 1957; Harris 1954; Miller and Charles 1991; Wittgenstein 1953).
It had a huge impact on computational linguistics mainly because it
suggests a practical way to automatically harvest word “meanings” on
a large scale: If we can equate meaning with context, we can simply
record the contexts in which a word occurs in a collection of texts (a
corpus) to create a summary of the distributional history of the word
that can then be used as a surrogate of its semantic representation.

While nearly all corpus-based approaches to computational seman-
tics exploit distributional information in one way or another, we focus
here on Distributional Semantic Models (DSMs), that are the most
direct realization of the distributional hypothesis in computational lin-
guistics (Clark 2013b; Erk 2012; Landauer and Dumais 1997; Lund and
Burgess 1996; Sahlgren 2006; Schütze 1997; Turney and Pantel 2010).
In a DSM, each word is represented by a mathematical vector, that is,
an ordered list of numbers. The values in the vector components are a
function of the number of times that the words occur in the proximity
of various linguistic contexts in a corpus. As a toy example, suppose
that our target vocabulary contains the nouns dogs, hyena and cat and
our contexts are the words barks and runs. We traverse the corpus and
find out that dog occurs in proximity of runs 1 time and near barks 5
times. We can thus represent dog with the distributional vector that
constitutes the first column of Table 1. Similarly, hyena and cat are
represented by the next two columns in the table, reflecting how many
times they co-occur with runs and barks in the corpus.

Intuitively, based on this evidence we can deduce that dog is more
similar to hyena than to cat because they both occur one time with
runs and multiple times with barks, whereas cat occurs more frequently
with runs and never with barks. Distributional vectors allow a precise
quantification of similarity deriving from their representation as ge-
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FIGURE 1: Geometric representation of the vectors in Table 1.

ometric objects. In Figure 1, the vectors are represented as oriented
segments (“arrows”) running from the origin of a Cartesian plane to x
and y coordinates corresponding to the values in their first and second
components (e.g., the endpoint of the dog vector has coordinates x = 1
and y = 5).6

In this geometric view, the similarity of the contexts in which words
occur (and thus, according to the distributional hypothesis, their se-
mantic similarity) is measured by the distance of the corresponding
vectors on the Cartesian plane. In particular, DSMs typically use the
cosine of the angle formed by two vectors as a measure of semantic sim-
ilarity. The cosine is a function of the width of the angle, and ranges
from 1 for parallel vectors to 0 for perpendicular (or orthogonal) vec-
tors.7 In the running example, dog has a cosine of 0.96 with hyena
(the angle between the corresponding vectors is very narrow), and a

6Following common practice, we use boldface lowercase letters, e.g., a, to repre-
sent vectors, boldface capital letters, e.g., A, to represent matrices and Euler script
letters, e.g., X , to represent higher-order tensors (matrices and tensors are intro-
duced in Section 3.3 below). However, when we want to emphasize the linguistic
interpretation of a mathematical structure, we might denote it by its linguistic label
in italics: Depending on the context we might refer to the vector representing the
word dog either as dog or as dog.

7If the vectors contain components with negative values, the cosine can also be
negative, with the minimum value of -1 for parallel vectors pointing in opposite
directions. In distributional semantics, negative values may arise when counts are
transformed into other kinds of scores; see Section 2.1 below.
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much lower cosine of 0.2 with cat (wider angle).
We refer to the number of components of a vector as the size of

the vector. The vectors in our toy example have size 2. Of course, real
DSMs encode many more contexts, and consequently work with vectors
of much larger sizes (ranging from hundreds to millions of components).
The same geometric properties we can easily visualize on the Cartesian
plane for the size-2 case (such as angular width) generalize to vectors
of arbitrary size.

Mathematicians refer to the set of all possible vectors of size N as
the N-dimensional vector space. Hence, sets of distributional vectors
are often said to inhabit a “semantic” or “distributional” space. How-
ever, when we interpret the values in the components of a distribu-
tional vector as (function of) co-occurrences with contexts, the same
N-dimensional vector space will have di↵erent interpretations depend-
ing on the labels (linguistic contents) attached to the components. For
example, in the running example we associated the first component to
runs and the second to barks. If we associated the two components to
red and banana, respectively, mathematically we would still be operat-
ing in the same mathematical vector space (the 2-dimensional vector
space), but the vectors we would be obtaining would represent di↵erent
linguistic meanings. Thus, in what follows, whenever we talk of a vector
space, we implicitly refer to the set of all possible vectors of a fixed size
whose components are associated, in the same order, to the same set
of linguistic contents. Under this definition, there are many (possibly
infinite) distinct vector spaces of dimensionality N.

In the next subsections, we briefly survey the main steps necessary
to build a DSM (Section 2.1), we review how DSMs have been used in
practice (Section 2.2), and then turn to some theoretical issues pertain-
ing to them (Sections from 2.3 to 2.6). More thorough recent introduc-
tions to DSMs are provided by Clark (2013b), Erk (2012) and Turney
and Pantel (2010).

2.1 Parameters of DSMs

Most research on DSMs focuses on the many parameters of the pipeline
to extract distributional vectors from corpora.8 Surprisingly, there is
relatively little research on how the nature of the source corpus a↵ects
the quality of the resulting vectors, but, as in many other areas of
computational linguistics, the general consensus is that “more data is
better data” (Curran and Moens 2002b). The most popular data source

8Bullinaria and Levy (2007, 2012) provide a sysstematic evaluation of how some
of the pipeline parameters a↵ect DSM quality.
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is the British National Corpus,9 a 100 million word corpus attempting
to provide a “balanced” sample of various registers and genres of both
written and spoken English. More recently, larger corpora (in the order
of a few billion words), often made up of Web documents (including
Wikipedia pages), are also widely used.10

Probably the most important decision when developing a DSM
pertains to defining what is a context for purposes of counting co-
occurrences. Definitions of context range from simple ones (such as
documents or the occurrence of another word inside a fixed window
from the target word) to more linguistically sophisticated ones (such
as the occurrence of words of certain syntactic categories connected to
the target by special syntactic relations) (Curran and Moens 2002a;
Grefenstette 1994; Padó and Lapata 2007; Sahlgren 2006; Turney and
Pantel 2010). Di↵erent contexts capture di↵erent kinds of semantic
similarity or “relatedness” (Budanitsky and Hirst 2006). At the two
extremes, counting documents as contexts captures “topical” rela-
tions (the words war and Afghanistan will have a high cosine, because
they often co-occur in documents), whereas DSMs based on word co-
occurrence within narrow windows or constrained by syntactic relations
tend to capture tighter “taxonomic” relations (such as the one between
dog and hyena). Unsurprisingly, no single definition of context is ap-
propriate for all tasks, and the jury on the “best” context model is still
out (Sahlgren 2008).

Next, raw target-context counts are typically transformed into as-
sociation scores that discount the weights of components associated to
contexts with high probability of chance occurrence (Evert 2005). For
example, co-occurring with a relatively rare word such as barks is enor-
mously more informative about the meaning of dog than co-occurring
with the, despite the fact that, in any corpus, dog will occur many
more times with the latter than with the former. An association mea-
sure such as Pointwise Mutual Information or Log-Likelihood Ratio will
increase the value in the barks component, dampening the one in the
the component.

Optionally, the collection of vectors of association scores produced
in the previous step globally undergoes dimensionality reduction, after
which the same target words are represented in a lower-dimensionality
space whose components (deriving from the original ones via a statis-

9http://www.natcorp.ox.ac.uk/
10See for example http://wacky.sslmit.unibo.it/. A potential problem with

Web corpora is their systematic skewness, as in the probable overassociation of page
with home. This can presumably be addressed with better sampling and filtering
techniques (see Fletcher 2004, 2012).
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tical process that considers their correlation patterns) should capture
more robust “latent” aspects of meaning (Blei et al. 2003; Dinu and La-
pata 2010; Gri�ths et al. 2007; Landauer and Dumais 1997; Sahlgren
2005; Schütze 1997).

Although it is not strictly a parameter in the construction of DSMs,
researchers measure distributional (and thus semantic) similarity of
pairs of target words with di↵erent similarity functions. The already
introduced cosine of the angle formed by vectors is the most natural,
geometrically justified and widely used of these functions.11

We conclude this short survey of DSM engineering by observing
that, while in our discussion below we assume that the components
of a semantic space can be interpreted as a distribution over contexts
in which words tend to occur, in real DSMs, after the transformation
into association scores and dimensionality reduction, the relationship
between target words and contexts is often rather indirect.

2.2 Applications and cognitive simulations

The large-scale semantic representations provided by DSMs can prof-
itably be embedded in applications that require a representation of
word meaning, and in particular an objective measure of meaning sim-
ilarity. Such applications range from document retrieval and classifica-
tion to question answering, automated thesaurus construction and ma-
chine translation (Dumais 2003; Turney and Pantel 2010). DSMs are
also very e↵ective in simulating psychological and linguistic phenomena
related to word meaning, such as predicting similarity judgments and
semantic priming, categorizing nominal concepts into hypernyms, gen-
erating salient properties of concepts (and qualia of nouns), capturing

11A natural alternative to cosines is the Euclidean distance between vectors, that
is, the length of the segment that connects their endpoints. An important property
of Euclidean distance is that it is sensitive to vector length. Hyena is a less frequent
word than dog. Consequently, it occurs less often in the contexts of interest and its
distributional vector is geometrically shorter. Thus, in Figure 1 the endpoints of the
dog and hyena vectors are relatively distant, while the width of the angle between
the vectors is not a↵ected by length. If we kept collecting dog data without finding
any further hyena occurrences in the corpus, as long as dog maintained the same rate
of occurrence with runs and barks, the angle (and consequently the cosine) between
the two vectors would not be a↵ected, while Euclidean distance would keep growing.
The cosine can thus be seen as a more robust similarity measure than Euclidean
distance. This is not to say that vector length by itself is not an informative quantity.
For example, since it is a function of how frequently the word represented by the
vector was encountered in the corpus (modulo possible statistical transformations
of the input values), it is a measure of the reliability of the distributional evidence
encoded in the vector. Finally, note that Euclidean distance and cosine are in a
bijective functional relation if Euclidean distance is computed on vectors that have
been normalized to length 1.
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intuitions about the thematic fit of verb arguments and even spotting
the alternation classes of verbs (Baroni and Lenci 2010; Baroni et al.
2010; Landauer and Dumais 1997; Lenci 2011; Lund and Burgess 1996;
McDonald and Brew 2004; Padó and Lapata 2007; Padó et al. 2007,
and references there).

For example, starting with the classic work of Landauer and Dumais
(1997), researchers have shown that cosines in distributional space pre-
dict which word, among a set of candidates, is the synonym of a target
item (e.g., DSMs pick pinnacle as synonym of zenith over the foils
completion, outset and decline). DSM performance on this task ap-
proximates that of native English speakers with a college education
(Rapp 2004). Padó and Lapata (2007) and others have shown how the
cosines between vectors of word pairs can predict whether the cor-
responding words will “prime” each other or not (that is, whether a
subject will recognize the second word faster when the first one has
just been presented). Kotlerman et al. (2010) and others use DSMs
to predict lexical entailment (discovering whether the concept denoted
by one word implies the one denoted by another; for example, dog en-
tails animal). Padó et al. (2007) show that (simplifying somewhat) the
cosine between a vector representing the typical subject or object of a
verb and a vector representing an arbitrary noun correlates with human
intuitions about the plausibility of the noun as subject or object of the
verb. For example, the monster vector is closer to the average “subject-
of-frighten” vector than to the corresponding object vector, reflecting
subject intuitions that monsters are more likely to be frighteners than
frightees.

2.3 Polysemy and word meaning in context

We have suggested in the introduction that traditional formal seman-
tics might not be the right approach to capture the rich polysemous
patterns of (mainly) content words. On the face of it, standard DSMs
do not address the issue of polysemy, since they represent each word
with a single distributional vector. In the common case in which a
word has more than one facet of meaning (ranging from full-fledged
instances of homonymy such as river bank vs. central bank to subtler
alternations such as chicken in the farm vs. chicken in the oven or the
cases of co-predication and coercion discussed in the introduction), the
distributional vector will be a summary of these facets. There has how-
ever been a lot of work on handling polysemy in DSMs (e.g., Boleda
et al. 2012a; Erk 2010; Pantel and Lin 2002; Schütze 1998) showing that
these models are actually very well-suited to capture various kinds of
polysemy on a large scale. Note that polysemy is naturally modeled in
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terms of the contexts in which a word appears: In a sentence contain-
ing words such as farm, free-range and outdoors, the word chicken is
more likely to mean the animal than its meat (albeit an animal with a
clear culinary destiny). Consequently, a large subset of work on poly-
semy in DSMs (e.g., Dinu and Lapata 2010; Erk and Padó 2008, 2010;
Kintsch 2001; Mitchell and Lapata 2008; Reisinger and Mooney 2010;
Thater et al. 2009) has focused on the goal of modeling word meaning
in context.

There is a clear connection between distributional models of word
meaning in context and distributional models of compositionality,
which is the main topic of this article. For example, Mitchell and La-
pata (2008) discriminate between the senses of running in water runs
vs. horse runs by composing vectors representing the two phrases,
whereas Erk and Padó (2008) and others approach the same task in
terms of how the runs vector changes due to contextual e↵ects triggered
by the presence of water vs. horse. Mitchell and Lapata construct a
vector for water runs, Erk and Padó for runs-in-the-context-of-water,
so to speak (both the task and the latter approach are reminiscent
of Pustejovsky’s 1995 notion of co-composition, whereby the mean-
ing of a verb is a↵ected by the arguments it composes with). In our
research, we follow Mitchell and Lapata and focus on more general
compositional methods, hoping to develop composition operations that
are flexible enough to also capture word-meaning-in-context e↵ects,
and consequently handle polysemy correctly. In Section 3.4, we will see
why the specific framework for composition we are proposing might be
well-suited to handle context-driven meaning changes, and in Section
4.2 we will present evidence that we can successfully capture the sort
of co-compositional e↵ects briefly sketched above.

There are cases where immediate (co-)composition does not su�ce
for disambiguation, and only the wider context makes the di↵erence.
However, disambiguation based on direct syntactic composition takes
precedence; in a sentence such as “The fisherman saw from his boat
that the bank near the river docks was being robbed”, the verb robbed
overrides all the contextual features pointing to the river sense of bank.
But in cases like “The heavy rains made the river grow wild. The bridge
fell and the banks collapsed”, no current model of syntax-driven compo-
sition could disambiguate banks, since financial institutions are prone
to collapsing just as easily as river sides. In the long term, discourse
composition models will probably have their say on these cases. Note,
finally, that the problem of representing homonymy in terms of DSMs
will ultimately require a way to handle disjunctive meanings. We will
return to this issue in Section 7.
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2.4 DSMs as linguistically and psychologically viable
feature-based theories of word meaning

The process to build DSMs relies on the standard toolbox of compu-
tational linguists (corpus parsing, statistical measures of association,
etc.), but the resulting set of distributional vectors is not a tool in
and of itself. It is not immediately obvious, for instance, how to use it
to improve the performance of syntactic parsers, semantic role label-
ers or sentiment polarity detectors. A DSM should rather be viewed
as a portion of the lexicon containing semantic representations for (a
considerable proportion of) the words in a language. Unlike definitions
or subject-derived labels, these representations are intrinsecally graded,
thus ameanable to be processed by a range of mathematical techniques,
depending on the specific task we want to use them for. Baroni and
Lenci (2010), in particular, have shown how the very same set of distri-
butional vectors can be exploited for a large variety of di↵erent lexical
semantic tasks. A DSM, in this sense of a set of distributional vectors
for the words of a language, is rather more like a concrete implementa-
tion of a feature-based theory of semantic representation, akin to the
Generative Lexicon (Pustejovsky 1995) or Lexical Conceptual Struc-
tures (Jackendo↵ 1990). Unlike these theories, however, DSMs can be
induced on a large scale from corpus data, which makes them both
attractive from the acquisitional point of view and amenable to sys-
tematic evaluation on realistically sized data sets. DSMs, moreover,
use hundreds of features (that is, vector components), and assign them
(automatically induced) real-valued scores.12

A cautious view of DSMs is that they are a handy engineering sur-
rogate of a semantic lexicon. Various considerations support, however,
the bolder stance that DSMs are models of a significant part of mean-
ing as it is encoded in human linguistic competence (see Lenci 2008,
for related conjectures on the status of DSMs).13

First, these models are successful at simulating many aspects of hu-
man semantic performance, as briefly reviewed in Section 2.2 above.

Second, they achieve this performance using only large amounts of
naturally occurring linguistic data as learning input, a kind of input

12This latter property makes them particularly well-suited to capture prototyp-
icality e↵ects (penguins are less “birdy” than robins) and more in general all the
fuzzy, continuous aspects of lexical meaning that are intensively investigated by
psychologists (Murphy 2002) but problematic for formal semantics approaches to
the lexicon (Kamp and Partee 1995).

13We do not claim that distributional vectors are the only kind of semantic rep-
resentations that people store in their heads, just one of possibly many aspects of
meaning that might be stored in the semantic lexicon.
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that human learners also receive in generous doses (although, admit-
tedly, text corpora are very di↵erent sorts of linguistic data from those
that children are exposed to when acquiring their native tongue, in
terms of amount of data, order and presence of an associated external
context).

Third, even those language acquisition theorists who stress the role of
extra-linguistic cues (e.g., Bloom 2000) recognize that the vocabulary
size that teenagers command by end of high-school (in the order of
tens of thousands of words) can only be acquired by bootstrapping
from linguistic data.14 This bootstrapping is likely to take the form
of distributional learning: We all have the experience of inferring the
meaning of an unknown term encountered in a novel just from the
context in which it occurs,15 and there is psycholinguistic evidence
that statistical patterns of co-occurrence influence subjects’ intuitions
about the meaning of nonce words just as they do in DSMs (McDonald
and Ramscar 2001).16

Fourth and last, in neuroscience there is strong support for the view
that concepts are represented in the brain as patterns of neural acti-
vation over broad areas (Haxby et al. 2001), and vectors are a natural
way to encode such patterns (Huth et al. 2012); this suggests intriguing
similarities between neural and distributional representations of mean-
ing. Indeed, recent work in brain-computer interaction (Mitchell et al.
2008; Murphy et al. 2012) has shown that corpus-based distributional
vectors are good predictors of the patterns of brain activation recorded
in subjects thinking of a concept. This suggests, albeit in a very specu-
lative way, that there might be a direct link between the distributional
information encoded in DSMs and the way in which concepts are evoked
in the brain.

Of course, we do not want to suggest that DSMs are models of

14Bloom and others emphasize the role of interaction and attention in language
acquisition. Rather than providing extra cues to meaning, however, these cognitive
functions help learners to focus on the most informative portions of the input stream.
As such, they are compatible with distributional (as well as other forms of) learning.

15Humans often only require a single exposure to a word in context to learn
its meaning, a phenomenon known as “fast mapping” (Carey and Bartlett 1978).
We are not aware of studies systematically evaluating the quality of distributional
vectors extracted from single occurrences of words (although there is no doubt that
the distributional representation of words generally improves with more contexts).

16Chung-chieh Shan (personal communication) remarks that demonstrating that
humans rely on contexts to learn meaning is not the same as demonstrating that
meaning is given by a summary of these contexts, as they are embedded in distribu-
tional vectors. However, as Shan suggested to us, Occam’s razor favors a semantic
representation that is close to the distributional cues it derives from, until the latter
is proven wrong empirically.
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meaning acquisition. To name just one crucial di↵erence, the sequence
of texts used to form a context vector for a certain word is essentially
random (corpora are not internally ordered), whereas the linguistic
input that a child receives follows a fairly predictable progression both
in form (cf. the “motherese” hypothesis; see for example Newport et al.
1977) and domains of conversation, which are also likely to a↵ect the
statistical properties of word associations (Hills 2013). However, we do
endorse the view that distributional semantics is a theory of semantics,
and that DSMs are an important part of the semantic component of an
adult speaker’s mental lexicon. In short, the claim is that a core aspect
of the meaning of a word is given by (a function of) its distribution
over the linguistic contexts (and possibly the non-linguistic ones, see
next subsection) in which it occurs, encoded in a vector of real values
that constitutes a feature-based semantic representation of the word.

2.5 The symbol grounding problem

Since DSMs represent the meaning of a symbol (a word) in terms of a
set of other symbols (the words or other linguistic contexts it co-occurs
with), they are subject to the lack-of-grounding criticism traditionally
vented against symbolic models (Harnad 1990; from a philosophical per-
spective, the obvious reference is to the Chinese Room thought experi-
ment of Searle 1980). If symbols are not grounded in the sensory-motor
system and thus connected to the external world, they cannot really
have “meaning”. A good DSM might know about the linguistic contexts
in which the word daisy occurs so well that it can fake human-like intu-
itions about which other words are most similar, or accurately predict
which sentences could contain the word daisy. Still, since the DSM has
never seen a daisy and so it has never experienced its color, its shape,
etc., we might be reluctant to admit that the model truly “knows” the
meaning of the word daisy (references for the grounding debate in re-
lation to DSMs include Andrews et al. 2009; Burgess 2000; Glenberg
and Robertson 2000; Louwerse 2011; Riordan and Jones 2011). It is
indeed quite telling that DSMs have been applied with some success to
the Voynich Manuscript, a 15th century text written in an unreadable
script (Reddy and Knight 2011)—a case of ‘semantic analysis’ on a
document of unknown content.

We believe that the current limitations of DSMs to linguistic con-
texts are more practical than theoretical. Indeed, by exploiting recent
advances in image analysis, a new generation of DSMs integrates text
data with visual features automatically extracted from pictures that co-
occur with the target words, to attain a more perceptually grounded
view of distributional word meaning (Bruni et al. 2011, 2012; Feng and
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Lapata 2010; Leong and Mihalcea 2011; Silberer and Lapata 2012).
With research continuing in this direction, DSMs might be the first
symbolic semantic models (or even more generally the first fully im-
plemented large-scale computational semantic models) to truly address
the symbol grounding problem.

2.6 Meaning and reference

The symbol grounding challenge raised by philosophers and cognitive
scientists pertains to the perceptual underpinnings of our generic knowl-
edge of concepts (you need to have seen a dog to truly grasp the
meaning of the word dog). The dominant tradition in formal semantics
stresses instead another type of relation between linguistic signs and
the external world, characterizing meaning in terms of reference to a
specific state of the world, above and beyond our ability to perceive
it. Knowing the meaning of the statement Marco is a dog is knowing
under which outside-world conditions this statement would be true. To
calculate this, standard denotational semantics takes as its primitives
individuals (objects or events), truth values and propositions (possible
worlds, states of a↵airs).

The focus of denotational semantics and DSMs is very di↵erent,
and so are their strengths and weaknesses. In denotational semantics,
proper names are the simple cases, those that directly point to indi-
viduals, unary predicates refer to sets of individuals having a certain
property at a given time and world, binary ones refer to sets of ordered
pairs of individuals, and so forth. In turn, quantifiers express relations
between sets, modifiers typically reduce the size of sets, predicate con-
junction intersects them, etc. (see, e.g., Heim and Kratzer 1998). This
model of meaning has been designed to express episodic knowledge—
facts that are true of specific individuals at specific places and times.
Capturing the meaning of generic sentences—statements about laws,
regularities or tendencies of whole classes of objects—requires a com-
plex quantificational apparatus (Krifka et al. 1995; Cohen 2004) and is
a widely debated but still ill-understood topic.

DSMs, on the other hand, are extracted from large corpora where
proper names, common nouns and other predicates refer to states of
the world and events spanning a large chunk of time and space, re-
flecting di↵erent points of view, etc. So, if they are able to extract any
factual information at all, this is very likely to take the form of generic
knowledge. Indeed, a typical application of corpus-based semantics is
the extraction of commonsense-knowledge “factoids” that are gener-
ally useful while not universally true: bananas are yellow, birds fly, etc.
(e.g., Eslick 2006; Schubert and Tong 2003). Statistical notions are sim-
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ply not native to the formal semantics setup, but they are at the heart
of the DSM approach. We will return to the issue of generic knowledge
in Section 5.2 below. Two things should be noted here.

First, it is perfectly possible to give a reference-based interpretation
of DSMs, the question is what it tells us.17 Suppose we characterize the
meaning of a word w in the corpus C in terms of its sentential context,
expressed via a vector of binary values: for every word g, vectorw(g) =
1 if g appears along with w in some sentence in C, 0 otherwise. Suppose
we now call S the set of all words for which vectorw gives 1, i.e. the set
of all words that cooccur with w some sentence, and treat the lexicon
L of C as our domain of reference. Now S, built as an approximation of
the ‘meaning of w’ in a DSM, is at the same time the denotation in L of
the expression “the lexical sentential context of word w” in denotational
semantics. With some added complexity, it is straightforward to give
a referential translation of vectors which do not contain just binary
numbers, but any integer value. What this example shows is that the
divide between DSM and denotational semantics is not reference/lack-
of-reference, but rather reference to linguistic strings (which we can
easily record) or to objects (which we cannot). The question becomes
what the referential meaning of the noun phrase the linguistic context
of “dog” can tell us about the referential meaning of dog. As we hope
to show, quite a lot.

But now what about the linguistic context of “John”? How can DSMs
deal with objects that are often described as being “purely referential”,
empty of descriptive content? (proper names, demonstratives, personal
pronouns, etc.; Kripke 1980). We believe that in DSMs there is no prin-
cipled distinction between proper names and common nouns, but there
are very far-reaching practical ones. If we consider names like Barack
Obama and bare nouns like presidents, the di↵erence is small; both will
appear in highly informative contexts; people will write contrasting
things about Barack Obama, but so they will about presidents or just
about any common noun. Jut like common nouns, proper names can be
polysemous (Italy lost to Spain—the soccer team; Italy is boot-shaped—
the land, etc.), and the same techniques mentioned above for common
nouns can be used to make the right facets of meaning emerge in the
proper combination. But moving on the scale of referential expressions
from Barack Obama to Obama, then to Barack, to that person, to him
(or here, now, any finite tense marker), the dimension of homonymy
increases dramatically. Pure referential expressions are infinitely more

17Indeed, we recently became aware of the attempt of Copestake and Herbelot
(2012) to provide an extensional semantics for DSMs along lines that are very similar
to the ones we sketch here. See Section 6 for a brief review of their approach.
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ambiguous than descriptive ones, and this causes a proliferation of ap-
parent inconsistencies.

There are di↵erent strategies to cope with this problem. One is to
abandon the attempt to distinguish one John from another and focus on
what descriptive content remains to names and deictics, for instance the
fact that John will appear in contexts suitable for an anglophone male
human being. At the other end of the spectrum, one could preprocess
the input corpus with a (cross-document) anaphora resolution system
(Ng 2010; Poesio et al. 2010) to try to unify those names and deictics
that are likely to be coreferential.18

At least for the time being, we will just treat denotational semantics
and DSMs as covering complementary aspects of meaning. To exem-
plify, suppose we hear the sentence A dog is barking. Our distributional-
feature-based representation of its constituents will provide us with a
sketch of typical contexts in which it can be uttered truthfully, which
can orient our perceptual system to pick up the relevant cues to de-
termine if a dog is indeed barking right now, so that we can evaluate
the referential meaning of the sentence. Indeed, to step into science
fiction for a moment, given that state-of-the-art computational image
analysis systems produce vectorial representations of objects (see, e.g.,
Grauman and Leibe 2011), the process of verifying the state of a↵airs
described by an utterance against perceptual input could take the form
of operations on distributional and perceptual vectors, the former rep-
resenting the (parts of the) utterance, the second representing objects
and possibly events in the perceived world. This idea gains further
plausibility if we adopt distributional vectors that record perceptual
information coming from vision and other senses, as briefly discussed
at the end of the previous subsection.

Intriguingly, the view of the division of labour between DSMs and
denotational semantics we just sketched is not too far from those in-
terpretations of Frege’s (1892) famous sense and reference distinction
(e.g., Dummett 1981) that see the sense of a linguistic expression as
the manner in which we determine the referent (this would be the job
of its distributional representation), whereas the denotational meaning
is the referent itself.

Bridging denotational and distributional semantics to account for
the semantic interpretation of episodic statements is an exciting re-
search program, but it is probably too early to pursue it. However,

18An exciting new development that might be useful for these purposes is that
of distributional methods to geo-locate documents (Roller et al. 2012): The John
Smith referred to in a document from Bakersfield is relatively unlikely to be the
same John Smith mentioned in an article from Hyderabad.
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there are many other aspects of semantics that can be captured inde-
pendently of the ability to pick up reference from the current state of
the world. We reviewed above the many lexical semantic tasks where
DSMs representing single words have been very e↵ective despite their
lack of direct real-world referencing capabilities (spotting synonyms and
other semantic relations, measuring verb-argument plausibility, etc.),
and we will discuss in Section 5.2 below potential applications of non-
real-world-referring DSMs to the semantics of phrases and sentences.

3 Composition by function application in
distributional semantics

Given the success of distributional semantics in modeling the meaning
of words (in isolation or in context), it is natural to ask whether this
approach can be extended to account for the meaning of phrases and
sentences as well. Some pursuers of distributional semantics think that
the latter should be limited to modeling lexical meaning. We postpone
to Section 5 below a discussion of our theoretical and practical moti-
vations for constructing distributional representations of constituents
above the word, since it will be easier to motivate phrasal/sentential
distributional semantics after we have introduced (in this and the next
section) how we intend to realize it and the current empirical support
we have for our approach.

We suggested in the previous section that the (distributional) mean-
ing of a word is a summary of the contexts in which the word can occur.
We maintain a contextually-based meaning for phrases and sentences
too. Since we typically use the other words in the same sentence as
context for our lexical DSMs, many colleagues have asked us what we
think the context for sentences should then be. There are many pos-
sibilities, and here are just a few: Since any sentence can be extended
with adjuncts, coordinates, etc., the context of a sentence could be
given by words that would naturally occur in its extensions. For “the
boy kissed the girl”, context would include words occurring in “the boy,
being madly in love, passionately kissed the girl on her mouth in the
park under the tree at midnight. . . ”. In alternatively or in addition,
the sentence context could include words or fragments of the previous
and following sentences. Another possibility for sentence contexts (in
line with DSMs such as LSA and Topic Models) is that they are dis-
tributions over the possible documents in which a sentence is more or
less likely to occur. Importantly, the approach to composition we will
develop in this section allows us to postulate di↵erent distributional
spaces for di↵erent types of linguistic expressions, since we are not
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committed to the limiting view that word and sentence vectors must
live in the same contextual space (we return to this point in Section
3.4 below).

For both words and larger expressions, distributional semantics must
find ways to extract from finite evidence an estimate of how their dis-
tributional profile would look if we had an infinite corpus available.
For words, a large but finite corpus provides a sample of possible con-
texts of su�cient size to constitute a decent surrogate of infinity; for
most phrases and sentences, it does not (given that there is an infinite
number of possible phrases and sentences), and we need a di↵erent,
compositional strategy to come up with indirect estimates of their dis-
tributional profiles.

Building on what we originally proposed in Baroni and Zamparelli
(2010), we present an approach to compositional distributional seman-
tics that relies on Frege’s (1892) distinction between “complete” and
“incomplete” expressions. Specifically, we distinguish between words
whose meaning is directly determined by their distributional behaviour,
e.g. nouns, and words that act as functions transforming the distribu-
tional profile of other words (e.g., verbs). As discussed in Section 2, rep-
resentations for the former can be directly induced from their patterns
of co-occurrence in a corpus. We add to this standard practice a new
view on the incomplete expressions and treat them as transformations,
the simplest case of which is a mapping between the corpus-derived
vector for a word to the corpus-derived vector for a larger constituent
that contains that word. While distributional vectors are extracted from
a corpus directly or are the result of a composition operation, distri-
butional functions are induced from examples of their input and out-
put representations, adopting regression techniques commonly used in
machine learning. Finally, like in formal semantics, we take syntactic
structure to constitute the backbone guiding the assembly of the se-
mantic representations of phrases. In particular, following Montague
(e.g., Montague 1970b,a), we assume a categorial grammar and define
a correspondence between syntactic categories and semantic types. In
our case, the latter are the types of the semantic spaces where words
and other expressions live rather than their domain of denotation.

We first motivate the function-based approach comparing it to the
current mainstream “component mixture” view of composition in dis-
tributional semantics (Section 3.1). The idea of distributional func-
tions is presented in Section 3.2. Section 3.3 provides mathematical
background for our concrete proposal concerning distributional func-
tions, that is then introduced in Section 3.4. Section 3.5 describes how
distributional functions can be induced from corpus data. Section 3.6,
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TABLE 2: Left: distributional vectors representing the words dog, cat
and old. Center: adding the old vector to dog and cat, respectively, to
derive old dog and old cat vectors. Right: The same derivations using
component-wise multiplication.

additive multiplicative
dog cat old old + dog old + cat old � dog old � cat

runs 1 4 0 1 4 0 0
barks 5 0 7 12 7 35 0

finally, shows how our approach can be used together with a Categorial-
Grammar-based syntactic analysis of sentences to account for the syn-
tax and (distributional) semantics of an interesting fragment of English
in parallel.

3.1 Composition by vector mixtures

Mitchell and Lapata (2010), in what is probably the most influential
paper on the topic (see also Mitchell and Lapata 2008, 2009) have pro-
posed two broad classes of composition models focusing on important
special cases for each of the classes. These special cases are the additive
and multiplicative models we discuss next.

If each word is represented by a vector, the most obvious way to
“compose” two or more vectors is by summing them (that is, adding
the values in each of their components), as illustrated by the center
columns of Table 2. Indeed, this additive approach was also the most
common one in the early literature on composition in distributional
semantics (Foltz et al. 1998; Kintsch 2001; Landauer and Dumais 1997).

The other model studied in depth by Mitchell and Lapata adopts in-
stead a multiplicative approach. The latter is exemplified by the right-
most columns of Table 2, in which the values in the components of the
input vectors are multiplied to derive the composed representation.19

The components of additive vectors inherit the cumulative score
mass from the corresponding input components, so if an input vec-
tor has a high value in a component, the same high value will appear in
the composed vector, even if the same component was low or 0 in the
other input vector(s): For example, old+cat inherits a relatively high
barks score from old. Multiplication, on the other hand, captures the
interaction between the values in the input components. For example,
since cat has a 0 barks value, old � cat has 0 for this component

19Following Mitchell and Lapata, we use the � symbol for component-wise multi-
plication, since the standard product symbol (⇥) is used in linear algebra for matrix
multiplication, an operation that is not even defined for the pairs of column vectors
in Table 2.
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irrespective of old. When both input vectors have high values on a
component, the composed vector will get a very high value out of their
product, as illustrated for the second old � dog component in the ta-
ble. Mitchell and Lapata characterize these interaction properties of the
multiplicative model as a quantitative form of “feature intersection”.

In these two models, the input vectors are perfectly symmetric: They
contribute to the composed expression in the same way. However, lin-
guistic intuition would suggest that the composition operation is asym-
metric. For instance, in the composition of an adjective and a noun, the
adjective modifies the noun that constitutes the head of the resulting
phrase (an old dog is still a dog). The e↵ect of syntactic constituency on
composition is partially addressed by Mitchell and Lapata’s weighted
additive model, where the vectors are multiplied by di↵erent scalar val-
ues before summing.20 For example, in an adjective-noun construction
we might want the meaning of the noun head to have a stronger impact
than that of the adjective modifier. We can then multiply the adjective
vector by, say, 0.2 and the nominal one by 0.8 before summing them.
In the example from Table 2, (0.2 ⇥ old) + (0.8 ⇥ dog) = (0.8, 5.4), a
vector that is considerably closer to dog than to old. Assigning di↵er-
ent weights to vectors before summing can also address, to a certain
extent, the problem that both addition and multiplication are commu-
tative (a + b = b + a; a ⇥ b = b ⇥ a), and they thus produce the same
vector for, say, dog trainer and trainer dog, or dogs chase cats and cats
chase dogs.21

Mitchell and Lapata show that the multiplicative and weighted ad-
ditive models perform quite well in the task of predicting human simi-
larity judgments about adjective-noun, noun-noun, verb-noun (Mitchell
and Lapata 2010) and noun-verb (Mitchell and Lapata 2008) phrases.22

They also show that these simpler models (that we will call, henceforth,
the ML models) outperform approaches involving more sophisticated
composition operations from the earlier literature, such as tensor prod-
ucts (Smolensky 1990; Clark and Pulman 2007).

20In linear algebra, single numbers such as 31 or 0.212 are referred to as scalars, to
keep them apart from vectors and other multiple-component numerical structures.

21It can be shown that, as long as we use the cosine as similarity measure (see
Section 2 above), the multiplicative model will not be a↵ected by scalar weights. The
e↵ect of multiplying one or both vectors by a scalar before applying the component-
wise product is that the resulting composed vector will change its length while
pointing in the same direction. Thus, the (cosine of the) angle of the composed
vector with any other vector will stay the same.

22The other successful model of Mitchell and Lapata (2010), namely the dilation
model, can be seen as a special way to estimate the weights of the weighted additive
model, and we consider it as a special case of the latter here.
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Other studies have confirmed that the ML methods, in particular
the multiplicative model, are very competitive in various composition
tasks that involve simple phrases and do not test for word order or
di↵erent syntactic structures (Erk and Padó 2008; Grefenstette and
Sadrzadeh 2011a; Vecchi et al. 2011; Boleda et al. 2012b). Interestingly
and surprisingly, Blacoe and Lapata (2012) recently found that the
ML models reach performance close to the one of knowledge-intensive
state-of-the-art systems on a full-sentence paraphrasing task. Given the
weaknesses of the models we will present below, we can only conjecture
that the sentences in this data set fail to test for some crucial syntactic
aspects of language (a suspicion that is strengthened by the fact that
Blacoe and Lapata obtain excellent results with versions of the additive
and multiplicative models that ignore, if we understand correctly, all
function words – determiners, negation, etc. – in the test sentences).
The ML models are also very well-suited (and empirically e↵ective) for
tasks that we will not consider here under the rubric of compositionality
but which do involve looking at sentences and larger passages, such
as measuring textual coherence (Foltz et al. 1998) or predicting the
next word that will be uttered (Mitchell and Lapata 2009). Besides
their good empirical performance, the ML models are extremely easy
to implement, which makes them, undoubtedly, the best current choice
for practical applications.

Criticism of vector-mixture models

There are principled reasons, however, to believe that the ML models
can only account for the simple phrases made of content words (nouns,
verbs, adjectives) that they have been generally tested on, and that
they will not scale up to represent the meanings of sentences, or even
sub-sentential constituents with more complex internal structure.

One important limitation stems from the fact that both additive
and multiplicative models take as input corpus-harvested distributional
vectors representing the individual words that form a larger constituent,
and produce a mixture of these vectors to represent the constituent.23

The meaning of the phrase old cat might indeed be seen as a mixture
of the features of old things and cats. Consider however a determiner
phrase (DP) such as some cat : The mixture view is suddenly a lot
less appealing. First, we face the empirical problem of extracting a

23Instead of mixtures, we could also speak of averages, since the ML models
represent phrases as (functions of) averages of the vectors that compose them.
The result of (weighted) addition is a vector pointing in the same direction as the
(weighted) arithmetic average of the input vectors. The components in the vector
resulting from component-wise multiplication are squares of the geometric average
of the values in the corresponding components of the input vectors.
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distributional vector for a grammatical word such as some.24 Unlike the
content word cat, some occurs all over the place in the corpus, without
being associated to any specific domain or topic. It is unlikely that
the corpus-based vector of some will provide meaningful distributional
information about this word (and information that distinguishes it from
other grammatical words such as the, not or to).25 Even ignoring this
issue, it is highly counter-intuitive to think of the features of some cat
as a mixture of the features of “some” things and of the features of
cats. Rather, as we will argue below, the role played by some and cat
in composition is deeply asymmetric, with some acting like a function
operating on the features of cat.26

The mixture models are moreover unable to capture the radical
structural di↵erences that depend on the choice of words in a phrase.
Compare for example lice on dogs with lice and dogs. For the ML mod-
els, the two phrases only di↵er in that one contains on-vector-specific
component values that are replaced by and -specific features in the
other, in both cases mixed in the same way with the same lice and
dogs vector components. This completely misses the fact that the two
grammatical words reflect di↵erent semantic structures, with on dogs
operating as a modifier of lice in the first, while and conjoins lice and
dogs in the second. The ML models have no way to capture the dif-
ferent functional nature of words such as on (taking a DP to return
a locative nominal modifier) or and (in this case, taking two DPs and
returning a third one representing their conjunction).

Yet another reason to reject additive and especially multiplicative

24It might be tempting to get away from the thorny issue of representing gram-
matical words in distributional semantics by simply ignoring them. Indeed, the items
in the Mitchell and Lapata (2008, 2010) and Grefenstette and Sadrzadeh (2011a)
test sets we will partially introduce in Section 4 only contain content words: To
tackle these tests, we are asked to model sentences and phrases such as table shows
results or lift hand, rather than their more natural determiner-enhanced counter-
parts. This is convenient in the current early stages of compositional modeling,
but eventually, even to capture similarity judgments about simple phrases, we will
need to take grammatical words into account. For example, to model the intuition
that exterminating rats is more similar to killing many/all rats than to killing few
rats, you need to include the relevant quantifying determiners in the distributional
representations you compare.

25If context is extracted from very narrow windows, the distributional vectors of
function words might provide some useful information about their syntactic, rather
than semantic, properties.

26The problem already arises with composition of certain content words, for ex-
ample so-called “intensional” adjectives such as former (Kamp 1975): A former
owner is not somebody with a mixture of properties of former things and owners.
See Boleda et al. (2012b), shortly reviewed in Section 4.3 below, for an account of
intensional adjectives in compositional distributional semantics.
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models of composition comes from recursion, a crucial property of nat-
ural language. One of its consequences is that there is no fixed limit to
the number of modifiers. Consider the expressions cat, Siamese, spayed,
toilette-trained and short-haired. In a DSM, they are all likely to have
high values for the component corresponding to pet. But now, if we
mixed their vectors to build a nice toilette-trained spayed short-haired
Siamese cat, the resulting value for the pet component will be astound-
ing, dwarfing any component whose value is high just because it is high
in one of these expressions.27

The problems arising in phrases of just a few words will com-
pound when representing sentences, that are formed by combining
these phrases. We just cannot see how, by combining with addition
or multiplication the vectors of the words in “many dogs and some
cats have big lice on the back” we could come up with a meaningful
representation for this sentence.

3.2 Composition with distributional functions

To overcome the a priori limitations of the additive and multiplicative
models, we adopt the view from formal semantics that composition is
largely a matter of function application. We thus propose that the dis-
tributional meaning of certain words (and certain larger expressions)
is not encoded in vectors, but in distributional functions that take dis-
tributional vectors (or other linear algebraic objects, as we will see)
as input and return other vectors (or other objects) as output by op-
erating on the input components. Nouns, DPs and sentences are still
represented as vectors, but adjectives, verbs, determiners, prepositions,
conjunctions and so forth are all modeled by distributional functions.
An approximate geometric intuition for the di↵erence between a mix-
ture and a functional approach is given in Figure 2.28

Under the functional approach, we no longer treat grammatical
words such as many and some as highly problematic corpus-harvested
distributional vectors to be mixed with content word vectors, but rather
as functions from and onto representations of phrases that also include
content elements (e.g., from dogs to some dogs).

27On the other hand, this e↵ect might be used to capture the Conjunction Fallacy
(Tversky and Kahneman 1983). People might find it more probable that the concept
of pet is instantiated by a nice toilette-trained spayed short-haired Siamese cat than
by just a cat, despite the fact that the former is a subset of the latter. If what
we are after is modeling human judgment, we should strive to preserve a small
amount of the e↵ect given by multiplicative models also in our functional approach
to distributional semantics.

28The figure only illustrates the simple case of functions operating on vectors and
generating outputs that live in the same semantic space of the inputs.
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FIGURE 2: Mixture-based composition, such as the additive model illus-
trated in the left panel, takes distributional vectors representing two
words and “mixes” them (e.g., adds their components) to obtain the
representation of a phrase. In a function-based model, such as the one
illustrated on the right, one of the two words is not a vector, but a
function exerting an action on the argument vector to move it to a new
position in semantic space.

Moreover, di↵erent grammatical words impose di↵erent composi-
tional structures on phrases. Coming back to the lice on dogs vs. lice
and dogs example, we would model on as a function from DPs onto
distributional functions that, in turn, act as modifiers of nominal vec-
tors: (ON (dogs))(lice); whereas and could be an unary function
from a pair of DP vectors onto one representing their conjunction:
AND(lice,dogs).29

The asymmetry between a noun modified by a prepositional phrase
and a conjunction of DPs is seamlessly captured.

Anybody familiar with the classic treatment of compositionality
in formal semantics will agree that the functional approach is more
promising than vector-mixture methods. However, we must now spell
out what it means, in concrete, to apply a function to a vector, and how
we can come up with (i.e., in the jargon of machine learning, “learn”)
distributional functions that perform just the operations we want on
their inputs. Before we discuss these issues, we introduce the relevant
concepts from linear algebra.

29More precisely, in our approach we “curry” and into a unary function from DPs
onto functions from other DPs onto the conjoined form.
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3.3 Linear transformations, matrix-by-vector products and
tensors

The class of functions on vectors known as linear transformations or
linear maps plays a fundamental role in linear algebra, the branch of
mathematics that studies the algebra of vectors (e.g., Axler 1997; Meyer
2000; Strang 2003). When looking for an equivalent to compositional
function application in the vector-based distributional framework, it is
thus natural to start with the hypothesis that the relevant functions are
linear transformations. A linear transformation takes a vector of size
J and returns a vector of size I (where J might equal I), where each
output component is a linear combination of all input components, that
is, each output component is a weighted sum of the input components.30

There is an important correspondence between linear transforma-
tions and matrices (we introduce matrices in the next paragraph). Re-
call from Section 2 above that the N -dimensional vector space is the
set of all possible vectors of size N .31 Given the J- and I-dimensional
vector spaces, any linear transformation from the first onto the second
is entirely characterized by a matrix of shape I ⇥J . The application of
the corresponding linear transformation is given by the product of the
matrix by an input vector from the J-dimensional space.

Amatrix of shape I⇥J is an array of numbers whose components (or
cells) are indexed by two integers i, ranging from 1 to I, and j, ranging
from 1 to J .32 An I⇥J matrix is naturally thought of as a rectangular

30The defining characteristics of a linear transformation are that (i) the linear
transformation of the sum of two vectors must equal the sum of the linear trans-
formations of the two vectors (f(a + b) = f(a) + f(b)), and that (ii) the linear
transformation of a vector multiplied by a scalar equals the product of the scalar by
the linear transformation of the vector (f(ka) = kf(a)). As a consequence of this
latter property, if vectors are parallel in the input space, their linear transformations
will stay parallel in the output space, since multiplying a vector by a scalar changes
its length but not its direction.

31In this section, given the emphasis on vector algebra, we ignore the association
of components to linguistic labels in distributional semantic spaces.

32We prefer the non-standard term shape to the more commonly used size to
stress the fact that matrices and the other multi-index objects we will introduce
next are not only characterized by the number of components they have, but also
by how the latter are arranged according to their indices. Consider for example a
2⇥3 matrix. By interpreting the product symbol in the usual way, we can correctly
state that it is an object of size 2⇥3, in the sense that it has 2⇥3 = 6 components;
but, using the term shape, we want to emphasize that the 6 components are arranged
into a 2-by-3 array. When we say that two linear algebraic objects have the same
shape, we mean that the objects have the same number of indices (below, we will
call this quantity the order of the objects), and their indices have the same size
(obviously, by “size of the index I” we mean I itself: the size of the first index of
a 2 ⇥ 3 matrix is 2). A 2 ⇥ 3 matrix has a di↵erent shape from a 3 ⇥ 2 matrix,
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object with I rows and J columns. When we multiply an I ⇥ J matrix
by a vector of size J , we obtain a vector of size I whose i-th component
is a weighted sum of all J input components, each multiplied by the
value in the ij-th cell of the matrix. In mathematical notation, given a
matrix M of shape I ⇥ J and a vector v of size J , each component wi

of the I-sized vector w resulting from the product w = M⇥v is given
by:

wi =
j=J
X

j=1

Mij ⇥ vj

For example, the following 3 ⇥ 2 matrix M encodes a linear trans-
formation from the 2- onto the 3-dimensional space.

M =

0

@

1 5
1 2
4 0

1

A

Let us apply the linear transformation encoded in M to the 2 com-
ponent vector v:

v =

✓

3.1
1

◆

We obtain the 3 component vector w as illustrated in the following
equation:

w = M⇥ v =

0

@

1 5
1 2
4 0

1

A⇥
✓

3.1
1

◆

=

0

@

1⇥ 3.1 + 5⇥ 1
1⇥ 3.1 + 2⇥ 1
4⇥ 3.1 + 0⇥ 1

1

A =

0

@

8.1
5.1
12.4

1

A

Note how, for example, w1 = 8.1 is given by the sum of the v com-
ponents weighted by the 1st row of M (v1 = 3.1 is multiplied by the
value in the (1, 1)-th cell of M, that is, M1,1 = 1; v2 = 1 by that in the
(1, 2)-th cell, that is, M1,2 = 5).

The notion of linear transformations extends to arrays with more
than two indices, that in linear algebra are called tensors. A tensor,
more precisely, is any numerical array T whose values are indexed by n
indices (i.e., any object of shape I1⇥ . . .⇥In). The number of indices of a
tensor is called the order of the tensor. A vector is a first-order tensor
(components are addressed via a single index), matrices are second-
order tensors (one index for the rows, one for the columns), the I ⇥
J ⇥K object mapping vectors to matrices we are about to discuss is a
third-order tensor, and so on. In this article, depending on the context,

despite the fact that they have the same size (6 components) and number of indices
(2 indices). Their indices, however, have di↵erent sizes (the first indices have sizes
2 and 3, the second indices sizes 3 and 2, respectively). Note that a vector with I

components is, trivially, both an I-sized and an I-shaped object.
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we might use the term tensor to refer to any indexed number array
(including vectors and matrices), or, when contrasted with the vectors
or matrices, to objects of order larger than second (the latter are also
referred to as higher-order tensors).33

Coming back to linear transformations and how they extend to gen-
eral tensors, suppose for example that we want to map from K-sized
vectors onto I⇥J-shaped matrices (since we just saw that matrices
encode linear transformations, this is our equivalent of a function that
returns a function). Again, each ij-indexed component of the output
matrix will derive from a weighted sum of all K input vector compo-
nents. A tensor T with shape (I ⇥ J)⇥K stores the lists of K weights
needed to derive each ij-th component, and the mapping is performed
by the product of T with the input vector.34 Similarly, if we want to
map from K ⇥ L onto I ⇥ J matrices, the mapping tensor T will have
shape (I ⇥ J) ⇥ (K ⇥ L), and the mapping will be performed by the
product of T with the input matrix. In this case, the ijkl-th component
of T will contain the weight that the kl-th cell of the input matrix must
be multiplied by when computing the weighted sum of all input cells
that generates the ij-th output cell. We refer to the product operation
needed to map from and onto objects other than vectors as generalized
matrix-by-vector product35 (vanilla matrix-by-vector multiplication is

33Again, please pay attention to the terminology: The size of an index I is I; the
size of a tensor is the total number of components it contains, that is, the product
of the sizes of its indices; the order of a tensor is the number of indices used to
arrange its cells; the shape of a tensor refers to both the number of indices and their
respective sizes.

34Here and below, we add parentheses to the index structure of higher-order
tensors, in order to emphasize their functional role. We might denote the shape of
the same I ⇥ J ⇥ K tensor with (I ⇥ J) ⇥ K if we intend to use it to map from
K-sized vectors onto I ⇥ J matrices (as in the main text), or with I ⇥ (J ⇥ K) if
we use it to map from J ⇥K matrices onto I-sized vectors.

35We use this term to underline the fact that the general product operation we
assume here is equivalent to unfolding both the input and the output tensors into
vectors, applying standard matrix-by-vector multiplication, and then re-indexing
the components of the output to give it the appropriate shape. For example, to
multiply a (I ⇥ J)⇥ (K ⇥ L) fourth-order tensor by a K ⇥ L matrix, we treat the
first as a matrix with I ⇥ J rows and K ⇥ L columns and the second as a vector
with K ⇥ L components (e.g., a (2 ⇥ 3) ⇥ (3 ⇥ 3) tensor can be multiplied with a
(3 ⇥ 3) matrix by treating the latter as a 9 component vector and the former as a
6⇥ 9 matrix). We perform matrix-by-vector multiplication and then rearrange the
resulting I⇥J-sized vector into a matrix of shape I⇥J (continuing the example, the
values in the 6 component output vector are re-arranged into a 2⇥ 3 matrix). This
is a straightforward way to apply linear transformations to tensors (indeed, there
is a precise sense in which all tensors with the same shape constitute a “vector”
space). There are alternative ways to multiply tensors of various orders (including
standard matrix-by-matrix multiplication) that are not relevant for our current



272 / Marco Baroni, Raffaella Bernardi and Roberto Zamparelli

of course a special case of the generalized product).
The formula to compute each output component in generalized

matrix-by-vector multiplication is as follows. Given input V with shape
J1⇥ . . . ⇥Jn and components denoted by Vj1...jn , and a linear transfor-
mation encoded in a tensorM with shape (I1⇥ . . .⇥Im)⇥(J1⇥ . . .⇥Jn)
and components denoted by Mi1...imj1...jn , each component Wi1...im of
the output tensor W (of shape I1 ⇥ . . . ⇥ Im) is given by a weighted
sum of all input components as follows:

Wi1...im =
j1=J1
X

j1=1

. . .
jn=Jn
X

jn=1

Mi1...imj1...jnVj1...jn

We conclude this brief survey of the linear algebra behind our ap-
proach by pointing out that there exists an operation of tensor transpo-
sition that, in the restricted version we need here,36 swaps the last two
indices of a tensor. Specifically, in the third-order case, each component
of the transposed tensor T T is given by: TT

ijk = Tikj . A useful property
of transposition is that

(T ⇥ v)⇥w = (T T ⇥w)⇥ v

That is, the result of multiplying a third-order tensor (in the generalized
matrix-by-vector product sense) by one vector, and then the resulting
matrix by another vector is the same as that of multiplying the ten-
sor transpose by the two vectors in the opposite order. We will see a
linguistic application of this property in Section 3.6 below.

3.4 Distributional functions as linear transformations

We propose that distributional functions are linear transformations
on semantic vector (or more generally tensor) spaces. First-order one-
argument distributional functions (such as adjectives or intransitive
verbs) are encoded in matrices. The application of a first-order func-
tion to an argument is carried out via matrix-by-vector multiplication
as follows:

f(a) =def F⇥ a = b

where F is the matrix encoding function f as a linear transformation,
a is the vector denoting the argument a and b is the vector output to
the composition process.

Let us take as an example the composition of an adjective with a
noun. Let us assume, as we have done above, that nouns live in a 2-
dimensional space. Hence the adjective, as a function from nouns to

purposes (Bader and Kolda 2006; Kolda and Bader 2009).
36See Bader and Kolda (2006, Section 3.3) for a more general and detailed dis-

cussion of various properties of tensors including transpositions.
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TABLE 3: The adjective old as the distributional function encoded in the
matrix on the left. The function is applied to the noun dog via matrix-
by-vector multiplication to obtain a compositional distributional rep-
resentation of old dog (right).

OLD runs barks
runs 0.5 0

barks 0.3 1

⇥

dog
runs 1

barks 5

=

OLD(dog)
runs (0.5⇥ 1) + (0⇥ 5)

= 0.5
barks (0.3⇥ 1) + (5⇥ 1)

= 5.3

nouns, is a 2 ⇥ 2 matrix (it multiplies with a 2 component vector to
return another 2 component vector). Suppose that old is associated to
the toy matrix on the left of Table 3. Then, applying it to the usual dog
vector returns the vector for old dog shown on the right of the same
table.

The matrix labels illustrate the role played by each cell of the dis-
tributional function matrix in mapping from the input to the output
vector: Namely, the ij-th cell contains the quantity determining how
much the component corresponding to the j-th input context element
contributes to the value assigned to the i-th context element in the
output vector. For example, the first cell of the second row in the toy
OLD matrix indicates that the runs-labeled component of the input
noun will contribute 30% of its value to the barks-labeled component
of the old N output.

In the case of old, we can imagine the adjective having a relatively
small e↵ect on the modified noun, not moving its vector too far from
its original location (an old dog is still a barking creature). This will
be reflected in a matrix that has values close to 1 on the diagonal
cells (the ones whose weights govern the mapping between the same
input and output components), and values close to 0 in the other cells
(reflecting little “interference” from other features). On the other hand,
an adjective such as dead that alters the nature of the noun it modifies
more radically could have 0 or even negative values on the diagonal, and
large negative or positive values in many non-diagonal cells, reflecting
the stronger e↵ect it has on the noun.

Table 3 also illustrates an important point about matrices and
higher-order tensors when they are used as distributional functions. In
Section 2, we remarked that a distributional semantic space is char-
acterized not only by its mathematical properties. The linguistic tags
associated to the components also matter. Similarly, when looking at
matrices and tensors from the distributional point of view, the sets of
labels associated to their cells also matter. Table 3 contains a 2⇥2 ma-
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trix with the same labels for rows and columns (this is not necessary: it
happens here because adjectives, as we have already stated, map nouns
onto the same nominal space), and where the first cell, for example,
weights the mapping from and onto the runs-labeled components of
the input and output vectors. A mathematically identical matrix where
the first cell maps, say, from banana to sympathy components is a very
di↵erent linguistic object. Just like for vectors, we can meaningfully
speak of tensor spaces. Just like for vectors (that are of course a special
case), a distributional tensor space is the space of all possible tensors
with the same shape and with the same associations of index elements
to linguistic content labels (that, ultimately, reflect information about
possible context distributions).37

Di↵erent matrices can act di↵erently on the same vectors, but also
the same matrix can act di↵erently on di↵erent vectors. Since a linear
distributional function derives each component of the output vector by
combining a set of input components with di↵erent weights, there is a
lot of room for modeling varied semantic e↵ects. Consider for example
the case of some (that, in this paper for sake of simplicity, we assume
to be a function taking a noun and returning a determiner phrase).
Some should have a di↵erent e↵ect depending on whether it is applied
to a mass (some co↵ee) or count (some cats) noun. Consider another
toy example where, for explanatory reasons, we promoted nouns from
2 to 3 components (with labels NMass, NCount1 and NCount2), and
DPs are vectors with 4 components (DPOther, DPObj1, DPObj2, DP-
Subst). Suppose moreover that mass nouns tend to have high values in
the first component (NMass) and count nouns in the second and third
(NCount1, NCount2). Similarly, say that the quantifying characteris-
tics of a DP that would be relevant to a substance are expressed in
the fourth component (DPSubst), whereas those that are relevant to
countable objects are captured by the second and third components,
DPObj1 and DPObj2 (with the first component, DPOther, expressing
other properties). Then, some could be a matrix with the following
form:

SOME NMass NCount1 NCount2
DPOther 1 1 0
DPObj1 0 3 2
DPObj2 0 2 3
DPSubst 5 0 0

37When we say that a component (or cell) of a tensor is associated to a (set of)
linguistic label(s), we mean, more precisely, that the index element or set of index
elements needed to uniquely address that component are associated to the label(s).
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When the distributional some function is applied to a noun, that is,
the SOME matrix is multiplied by the noun vector, the value in the
first component of the resulting DP is determined, with equal weights,
by both a mass and a count component of the input noun (since NMass
and NCount1 have the same value and NCount2 is 0), reflecting the
fact that this component expresses properties that are unrelated to
the count/mass distinction. The second and third components of the
DP (containing information about quantity characteristics of countable
objects) will depend on the second and third components of the noun,
that are high in count nouns only, with a strong positive dependence
between the input and output components (the input values are mul-
tiplied by weights higher than 1 before summing them). The fourth
component of the DP, encoding quantification information pertaining
to substances, is just (positively) a↵ected by the first component of the
noun vector, the one that is high in mass nouns only.

This toy example should give an idea of the flexibility of the linear
approach. With realistically sized vectors and matrices, it is possible to
capture many more patterns, and in a more granular way (for exam-
ple, including negative weights to capture inverse correlations between
input and output components, and encoding semantic properties such
as substance and objecthood as a distribution over a large set of input
and output components, rather than just one or two).38 Indeed, it is
the flexibility given by the wealth of information that can be encoded
in large matrices that makes us hopeful that the linear approach will
be able to handle the regular polysemy phenomena we discussed in the
introduction and in Section 2.3. Probably not by chance, in Baroni and
Zamparelli (2010), we found that some of the adjectives that are best
modeled by the linear approach are very polysemous terms such as new,
great or large.

Before we move on to discuss various aspects of the linear-transfor-
mation-based composition framework, we will highlight two properties
of the operation employed to perform linear transformations, namely
(generalized) matrix-by-vector products, that have important conse-
quences for how we use them in the linguistic composition framework.

First, generalized matrix-by-vector multiplication is only defined
when the last indices of the first term have the same shape as the

38Speaking of flexibility, note that the multiplicative model is a special case of
linear transformation where the matrix has as diagonal elements the components
of a corpus-derived vector for one of the words in the phrase and 0s elsewhere.
This matrix is then multiplied by the vector representing the other word. It is a bit
more involved but also possible to encode the additive model as matrix-by-vector
multiplication.
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second term. For example, you cannot multiply an I ⇥ I matrix by
a J component vector, or by an I ⇥ J ⇥ K tensor.39 This resonates
with types in formal semantics, where you cannot apply, say, an e ! t
function to any argument but those of type e, a point we will return to
multiple times below.

Second, the generalized matrix-by-vector product, unlike the prod-
uct of scalars, is not commutative. For example, OLD⇥FAST⇥car 6=
FAST⇥OLD⇥ car, and CHASE ⇥ cats⇥dogs 6= CHASE ⇥dogs⇥
cats, in accordance with our linguistic expectations about the corre-
sponding constructions.40

Mapping between di↵erent distributional semantic spaces

The toy SOME matrix we just discussed highlights another important
novelty with respect to the ML mixture models. Addition and multipli-
cation will create composed vectors that must live in the same vector
space as their inputs. On the other hand, linear transformations can
map onto di↵erent spaces from those of their domains. For example,
SOME maps nominal vectors living in a 3-dimensional space to DP
vectors that live in a 4-dimensional space, where the two spaces also
di↵er in terms of the linguistic labels associated with the components.
Linear transformations do not need to map vectors to an output space
that di↵ers from their domain (unlike earlier methods based on tensor
operations where each composition step resulted in tensors of higher
orders: see Mitchell and Lapata 2010 for discussion). For example, we
have already seen that the OLD matrix in Table 3 above maps nouns
onto adjective-noun phrase vectors that live in the same space, in accor-
dance with the standard analysis of (attributive) adjectives as modifiers
that take nouns as input and return other nouns as output.41 How-
ever, in other cases the possibility of defining di↵erent distributional
semantic spaces for di↵erent constituents gives us further flexibility for

39At least, you cannot do it using the generalized matrix-by-vector product op-
eration we defined in Section 3.3.

40Treating nominal conjunctions as third order tensors, we predict inequalities of
the sort: AND ⇥ cats ⇥ dogs 6= AND ⇥ dogs ⇥ cats that are not intuitive from
a truth-theoretical point of view. It remains to be seen if they are justifiable in a
distributional perspective.

41Indeed, this property of attributive adjectives make them an ideal illustration of
an important property of language, recursivity. Since the application of an adjective
to a noun gives a result in the same space as the original noun, the operation
can be easily repeated an indefinite number of times. That is, if we have matrices
representing large, old and brown separately, we can easily apply them in sequence
to generate a meaning for “large old brown dog” (however, see footnote 42 for an
alternative). Ongoing work aims to uncover the semantic e↵ects of various deviant
adjectival sequences (e.g., contradictions like “old young dog” and redundancies
such as “brown brown dog”).
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encoding contextual information into features that are rich enough to
capture di↵erent nuances of meaning. For example, nouns might live
in a semantic space characterized by features (that is, linguistic labels
associated to specific components) that are content words connected to
the target nouns by interesting syntactic relations (along the lines of
Curran and Moens 2002a, and many others), whereas sentences might
be vectors living in a space of topics of conversation, à la Gri�ths et al.
(2007), or even in a space characterized by more abstract contextual
cues to discourse structure and such (see the beginning of Section 3
above for some conjectures about the nature of sentence space).

Of course, if di↵erent spaces have to be handcrafted to suit the needs
of di↵erent categories we would run against the objection that any se-
mantic e↵ects uncovered using them might be due to our specific choice
of vector dimensions. Even with the best intentions, the selection of
the ideal features for each space might be problematic, especially if
spaces begin to multiply.42 To address this potential criticism, we ul-
timately envision a fully automated labeled-component selection sys-
tem. The general idea is that we should initially prepare a single huge
semantic space whose components are associated with linguistic fea-
tures at many di↵erent levels (lexical, categorial, syntactic-structural
features, information-structural, topical, etc.), then extract the n fea-
tures that are most informative in the representation of the various
linguistic structures that we regard as non-functional (minimally Ns,
DPs and S), e.g., features whose associated components exhibit the
highest within-category variance.43 These components and associated

42A case in point is that of recursive structures, which we just discussed in the
context of adjectival modification. According to some authors, complements are the
only truly recursive cases in languages, modifiers are not. In this view (see Cinque
2002, Cinque 2010, Scott 2002 and most representatives of the ‘cartographic’ ap-
proach to syntax), adjectives and adverbs follow a natural ordering, e.g., SIZE >

COLOR > SHAPE, and there is a finite sequence of types of modifiers available
for each noun. This view could be easily (if laboriously) accommodated within the
present framework by assuming that in, say, “large blue car” the COLOR adjective
blue does not project car back into its original noun-space, but into a slightly di↵er-
ent space which is that of nouns-plus-COLOR-information. In turn, large would map
elements from the nouns-plus-COLOR-information to the nouns-plus-COLOR-and-
SIZE-information space, and so forth. This entails that large could not be directly
applied to car ; rather, one would have to first apply an invisible mapping from car
to car-with-unspecified-color (to move the input to the correct space), then apply
large to it. The oddness of applying multiple adjectives in the wrong order (“red
large car”) would be the e↵ect of applying a function to an input in the wrong
space. It is an open question whether this additional complexity is justified. What
matters here is that it would pose no special theoretical problems to our approach.

43Needless to say, the initial computation to calculate the most informative fea-
tures for each primitive category will be humongous. But it needs to be carried out
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features will then characterize the space where the distributional mean-
ings of the individual expressions in each non-functional category reside
(the labels of components of higher-order tensors are, deterministically,
those of their input and output categories).

Modeling functions operating on functions

In Section 3.3 we showed how linear transformations by matrix-by-
vector multiplication can be generalized to structures with an arbitrary
number of indices. This is fundamental for their use in semantics, where
functions must manipulate other functions both as input and as output.
Let us start with an example of the second case. If nouns are I com-
ponent vectors, DPs J component vectors and we adopt the standard
analysis of a preposition such as on (in a noun-modifying context) as
taking an input DP to return an adjective-like function that takes and
returns a noun, in distributional terms we will treat on as an (I⇥I)⇥J
tensor. When this object is multiplied by a J-sized DP vector, it re-
turns an I ⇥ I matrix (analogous to our representation of the adjective
old above), that can then be multiplied by a noun, as in the following
derivation of an I-sized vector for louse on dogs :

(ON (I⇥I)⇥J ⇥ dogsJ)⇥ louseI = [ON (dogs)]I⇥I ⇥ louseI

= {[ON (dogs)](louse)}I
In our running toy example, nouns are 3-component vectors and DPs

have 4 components, so ON would be tensor of size (3⇥3)⇥4 mapping
from a 4-dimensional vector space onto a 3⇥3-dimensional tensor space.

Similarly, suppose that an intransitive verb is analyzed as a VP (verb
phrase), that is, a function from DPs to sentences, and thus as a matrix
of shape K ⇥ J mapping from the J-dimensional DP space (in which
subject vectors live) onto the K-dimensional sentence space. A transi-
tive verb will then be a third-order (K ⇥ J)⇥ J tensor mapping from
the J-dimensional DP space (where of course also DPs that function
as sentential objects live onto a VP, that is, an intransitive-verb-like
K ⇥ J matrix.) If, to continue the toy example, DPs are vectors with
4 components and sentences vectors with, say, 2 components, then in-
transitive verbs would be 2 ⇥ 4 matrices and transitive verbs would
be (2 ⇥ 4) ⇥ 4 tensors. Readers familiar with the standard theory of
semantic types will recognize, again, the analogy between the role of
denotation-based types in the standard theory and the shape of ten-
sors (plus the associated index labels!) in the distributional approach,
a point we return to more explicitly in Section 3.6.

Consider next the case of a higher-order function that takes other

only once.
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functions as arguments. As we know from formal semantics (see, e.g.,
Heim and Kratzer 1998, Chapter 5), a relative pronoun acts as a bridge
between a verb phrase and a noun: it modifies the noun with the verb
phrase. In the denotational view, it is represented by the 2-argument
function that takes a verb phrase (viz., a property) and a noun (viz., a
property) to return a noun denoting the intersection of the two prop-
erties, for instance [[dogs]] \ [[eat meat]]. Note that this is the semantics
of intersective conjunction, as we see it in the examples in (6), applied
to verbs, nouns, DPs and adjectives.

(6) a. Bill [walked] and [talked].

b. My [friend] and [colleague] gave me a long hug.

c. As [a mother] and [a well-respect researcher], Sue has much
to share with us.

d. A [tall] and [handsome] gentleman

How can we capture the same intuition in distributional semantics?
We do not have an overt and as in the examples above, so in first ap-
proximation we must capitalize on the presence of the relative pronoun,
treated as a function that takes a VP such as “eat meat” as input and
returns the noun modifier “which eat meat”.44 What kind of linear al-
gebraic object should which be to serve this role? Suppose, as before,
that nouns live in 3-dimensional space, DPs in 4-dimensional space and
sentences in 2-dimensional space. Consequently, VPs are 2⇥4 matrices
and a noun modifier (such as an adjective) is a 3⇥ 3 matrix. It follows
that which is a fourth-order tensor with shape (3⇥3)⇥(2⇥4) mapping
from 2⇥ 4 input VP matrices to 3⇥ 3 output noun-modifier matrices.
More generally, if the noun space is I-dimensional, the DP space is J-
dimensional and the sentence space is K-dimensional, then a relative
pronoun such as which is an (I ⇥ I)⇥ (K ⇥ J) tensor.

Measuring similarity of tensors

In the same way that we can measure degrees of similarity (and other
properties) of two or more vectors living in the same vector space,
we can measure the similarity (and other properties) of matrices and
higher-order tensors, as long as they have the same shape (as we re-
marked in footnote 35, the set of all same-shape tensors constitutes,
indeed, a vector space).45 In particular, we can always represent an

44In Section 3.6, we will handle the more di�cult case in which the pronoun acts
as object of the relative: “meat which animals eat”.

45In line with our idea of distributional space as a linear algebraic space enriched
with linguistic index labels, a meaningful comparison will only be possible between
identically shaped tensors that also share the same associations of index elements
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n-th order tensor of shape I1 ⇥ . . . ⇥ In as a vector with a number of
components that equals the product I1⇥ . . .⇥ In, and thus we can use
exactly the same methods we adopt to measure the similarity of vectors
(such as the cosine comparison introduced in Section 2) to measure the
similarity of tensors of any order but with the same shape. Intuitively,
the cells of a matrix (or higher-order tensor) contain weights specifying
the impact that each component of the input has on each component
of the output. Two matrices (or tensors) are similar when they have a
similar weight distribution, i.e., they perform similar input-to-output
component mappings (we might expect the DECREPIT matrix to
dampen the runs component of an input noun just like the OLD ma-
trix in Table 3 does).

On the other hand, there is no straightforward way to compare ten-
sors of di↵erent orders or shapes. This entails that it is possible to
compare all and only the linguistic structures that live in the same
distributional semantic space, a limit which we regard as a positive
feature, if the goal is a more constrained theory of language: In the
ML models, all words and larger constituents live in the same space,
so everything is directly comparable with everything else. This is too
lax: asking for the degree of similarity between, say, the and eating car-
rots is asking an ill-conceived question. At the same time, we are aware
that the ban imposed by our method can sometimes be too strong.
In its pure form, it allows nouns to be compared to nouns, since they
are represented by vectors with the same number of components, but
not to adjectives, which are matrices. As a result, Rome and Roman,
Italy and Italian cannot be declared similar, which is counter-intuitive.
Even more counter-intuitively, Roman used as an adjective would not
be comparable to Roman used as a noun.

We think that the best way to solve such apparent paradoxes is
to look, on a case-by-case basis, at the linguistic structures involved,
and to exploit them to develop specific solutions.46 For example, a way
to measure similarity between an adjective and a noun would be to
apply the adjective matrix to a number of vectors representing nouns
that are frequently modified by the adjective, average these adjective-
noun vectors, and compare the resulting averaged vector (that, as a

to labels.
46One could also adopt purely mathematical methods to project tensors of dif-

ferent orders and sizes onto the same space. We doubt that such general methods
would be very e↵ective empirically (the naturalness of the task is cued by the fact
that one of the methods to pursue it is called “Procrustes Analysis”; Wang and
Mahadevan 2008), they are so general that they would then also allow the uncon-
strained similarity comparisons we want to avoid (e.g., the same method used to
compare Italy and Italian could also be used to compare the to eating carrots).
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sum of adjective-noun vectors, is still a vector living in nominal space)
to the noun of interest. For example, Italian could be represented for
these purposes by an average of the vectors of Italian citizen, Italian
flag, Italian government, Italian food, etc. (Baroni and Zamparelli 2010,
show that a similar method gives good results in an adjective clustering
task).

In the case of pairs such as Italy and Italian, perhaps the right
linguistic intuition to capture is not about similarity, but about the
fact that these two forms are related by a morphological process of
derivation, whereby the lexical function -(i)an is applied to nominal
roots to obtain the corresponding denominal adjectives. As we discuss
in Section 3.5 below, a nice feature of our approach to composition
learning is that it naturally extends to lexical functions of this sort
(in the case at hand, -(i)an would be a tensor mapping noun vectors
to adjective matrices). Then, “similarity” of Italy and Italian could
simply be modeled by observing that in our system the latter (at least
when used with a transparent denominal meaning) is derived from the
former.47

As intuitively clear, such special methods to capture similarity can-
not be applied anywhere and for any category. Some cases are and will
remain incomparable. It is an empirical issue whether this restriction
is too severe, or if, on the contrary, our assumptions impose just the
right constraints on the scope of similarity and related properties.

3.5 Inducing distributional functions from corpus data

We have argued that distributional functions might be a more ap-
propriate representation to capture composition than vector mixtures.
However, we have not yet addressed the fundamental issue of how the
operations performed by the distributional composition functions cor-
responding to individual words and constructions are specified. Assum-
ing that distributional functions are linear transformations, the ques-
tion can be framed more precisely as: How do we determine the values
to fill the cells of the tensor representing a distributional composition
function?

Obviously, we do not want to fill them by hand. It would be highly
impractical, since realistically-sized tensors will contain at least a few
thousand cells, and a useful lexicon should contain thousands of such
objects: one per adjective, one per verb, etc. The manual approach

47As a reviewer observed, as a model of word formation this would lead to over-
generation. However, the techniques described in Vecchi et al. (2011) for detecting
semantically anomalous AN combinations might be applied to exclude, at least,
semantically deviant root-a�x combinations such as *first-er.
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would also be theoretically undesirable, since we are pursuing systems
that, like humans, acquire semantic knowledge from naturally occurring
data.

We propose instead to learn a distributional function by extracting
examples of how its input and output tensors should look like from the
corpus, and using standard machine learning methods to find the set
of weights in the matrix that produce the best approximations to the
corpus-extracted example output vectors when multiplied by the corre-
sponding input vectors (the input and output vectors used to estimate
the matrix weights are called training examples in the machine learn-
ing literature, and the estimation process training ; we use the terms
training, learning and inducing more or less as synonymous). Consider
the case of the determiner some. The idea is to collect directly from
the corpus pairs of distributional vectors matching the templates <N,
some N> (<dog, some dog>; <cats, some cats>; <co↵ee, some cof-
fee>; etc.). We then use a statistical algorithm (regression) to find the
sets of weights that, on average, provide the best approximation to
each output component as a weighted sum of the corresponding input
components across the training set. These weights will fill the SOME
matrix.48

Clark (2013b) wonders if extracting composed vectors directly from
the corpus is in the true spirit of compositional semantics. We think it
is, since we only use these vectors in the learning phase as examples
of how the output of compositional processes should look like: It is ac-
ceptable even to a Fregean compositionalist to try to find out what a
compositional function does by comparing examples of its input and
output. Less compositionally inclined researchers of language develop-
ment, such as Tomasello 2003, actually view the acquisition process
more as one of decomposing larger chunks by discovering their internal
structure, than one of putting pieces together to build those chunks.
Note that we can throw away the corpus-extracted examples of phrase
vectors after learning, and use our fully compositional system to (re-
)generate all phrases and sentences. But this might not always be a
good move: As we briefly discuss at the end of Section 3.5 below, in
some cases there might be good reasons to prefer a “dual-route” view
where both compositionally-derived and directly corpus-induced phrase
representations are available.

48Incidentally, the idea of using corpus-harvested phrase vectors as targets of
learning is not restricted to our functional approach. We could for example use
minimum distance between composed and corpus-derived vectors from a training
set as the criterion to choose the best settings for the weighted additive model.
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Learning by regression

Algorithms to predict a continuous numerical value (such as a the value
in a component of the output vector) from a set of features (such as the
input components) are called regression methods, and they are widely
studied in statistics and machine learning (Hastie et al. 2009). We do
not need to delve here into the complexities of regression algorithms. As
linguists, we limit ourselves to borrow state-of-the-art methods from the
relevant literature. Su�ce to say that alternative regression algorithms
mostly di↵er in how they find a trade-o↵ between fitting the training
data as best as possible (i.e., finding sets of weights that produce output
values that are very similar to those in the example output vectors) and
avoiding “overfitting”, that is, avoiding very ad-hoc weight settings that
might produce an excellent approximation of the training set, but won’t
generalize to new data, since they over-adapted to the random noise
present in any set of examples, including the training set.

From a linguistic perspective, it is more interesting to ask whether
distributional vectors, directly harvested from the corpus for the com-
posed expressions we want to model, are a good target for function
learning. Theoretically, since distributional vectors are summaries of
the contexts in which a linguistic expression occurs, it is reasonable
to expect that a vector directly constructed from corpus contexts is a
good model of what we would like to learn by composition. If we want
to define a composition function generating the distributional vector
of some co↵ee from that of co↵ee, it stands to reason that we define
a function that approximates the actual distributional vector of some
co↵ee.

Of course, not many corpus-extracted phrases (and very few sen-
tences) are common enough to find enough occurrences of them in a
corpus to extract meaningful distributional vectors (that’s why we want
composition in the first place). However, we only need a few, reason-
ably frequent examples for each composition function to be learned
by regression. In the transitive verb experiments of Grefenstette et al.
(2013), good results were obtained with as little as 10 training examples
per verb.

Corpus-extracted phrase vectors as targets of learning

Given the centrality of learning from phrase examples for our approach,
we have collected various forms of empirical evidence that, at least for
adjective-noun constructions (ANs) and DPs, phrase vectors directly
extracted from the corpus make good semantic sense. It is thus reason-
able to use them as our target of learning.

In Baroni and Zamparelli (2010), we have presented qualitative ev-
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TABLE 4: The 3 nearest neighbours of the corpus-derived distributional
vectors of 9 randomly selected ANs (from Baroni and Zamparelli 2010).

bad luck electronic communities historical map
bad electronic storage topographical
bad weekend electronic transmission atlas
good spirit purpose historical material
important route nice girl little war
important transport good girl great war
important road big girl major war
major road guy small war
red cover special collection young husband
black cover general collection small son
hardback small collection small daughter
red label archives mistress

idence that the nearest neighbours (the nearest vectors in semantic
space) of the corpus-derived AN vectors are reasonable. See Table 4
(taken from Baroni and Zamparelli 2010) for examples of nearest neigh-
bours of nine randomly selected ANs.

A series of recent unpublished experiments provided quantitative
support for the intuition about the good quality of corpus-derived ANs
suggested by the data in Table 4. The experiments showed that the
nearest neighbour in distributional semantic space of a corpus-derived
AN vector is systematically picked by subjects as its most closely se-
mantically related term over other plausible alternatives.49 Subjects
were presented with an AN (e.g., serious decision), the nearest neigh-
bour of the corresponding distributional vector in semantic space (cru-
cial decision), and another relevant term, for example the nearest neigh-
bour of another AN sharing the same head noun (e.g., wrong decision,
which is the nearest neighbour of correct decision). Subjects were asked
which of the two terms they found most closely related in meaning to
the target AN (without, of course, being aware of how the two terms
were selected). Overall, 5,000 distinct triples were evaluated, with the
alternative foils including, besides random terms, nearest neighbours of
the adjective, of the noun, of ANs sharing the same noun and of ANs
sharing the same adjective. In all settings, subjects showed a strong,
statistically significant preference for the true nearest neighbour (in
the running example, crucial decision was picked over wrong decision

49These experiments and the some N nearest neighbour examples in Table 5 are
based on DSMs similar to those described in Section 4.1 below.
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TABLE 5: A choice of nearest neighbours (among top 20) of the corpus-
derived vectors for some cats and some co↵ee.

some cats some co↵ee
some dogs some tea
most cats some breakfast
most dogs some dinner
many cats some chocolate
many dogs another bottle
most rabbits some beer
some breeds another drink
most animals some cake
some horses some toast
some babies more beer

as the term most related to serious decision).
Note that, di↵erently from the ML models, our approach to dis-

tributional function induction does not require harvesting vectors for
grammatical words such as prepositions or determiners. Instead, we
collect vectors for phrases that contain such words combined with con-
tent words. We do not extract a (presumably uninformative) vector
from all contexts in which some occurs, but pairs of example vectors
such as <cats, some cats> and <co↵ee, some co↵ee>. A choice of near-
est neighbours of the corpus-harvested vectors for some cats and some
co↵ee is presented in Table 5.

Note first in Table 5 how all the neighbours are intuitively semanti-
cally close to the target DPs, involving nouns from the same domain and
mostly the same or a related quantifying determiner. Note moreover
how the neighbours of the count usage of some in some cats are, con-
sistently, other expressions involving counting of distinct individuals.
The mass usage with co↵ee, on the other hand, tends to attract other
constructions involving quantifying amounts of substances. It should
be possible to learn, by regressing on training examples of this sort,
that some has a di↵erent meaning when modifying a count or a mass
noun, as illustrated in the toy SOME matrix in the Section 3.4 above.

In Baroni et al. (2012), we have shown that corpus-harvested distri-
butional vectors for DPs with a quantifying determiner contain enough
information for a statistical algorithm to correctly learn and general-
ize the entailment status of pairs of DPs represented distributionally.
For example, if we extract from the corpus distributional vectors for a
few thousand entailing (each dog |=some dog) and non-entailing (many
cats 6|=all cats) pairs, and we feed them as labeled training data to a ma-
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chine learning program, the program is then able, given an arbitrary
pair of DP vectors, to tell whether the pair is entailing or not, with
accuracy significantly above chance. Generalization works even in the
case in which the test pairs contain determiners that were not in the
training data. That is, the program correctly predicts that, say, several
snakes 6|=every snake even if it did not see any phrase containing several
in the training data.

Further support for the hypothesis that corpus-harvested distribu-
tional vectors for phrases are high-quality examples of the composite
meaning they represent come from Boleda et al. (2012b) and Turney
(2012). Boleda and colleagues show that corpus-harvested vectors rep-
resenting AN constructions instantiating di↵erent kinds of modification
(intersective, subsective, intensional) display global patterns of similar-
ity that reflect linguistic intuitions about adjectival modification (see
also Section 4.3 below). Turney reports that corpus-harvested phrase
vectors (which he calls “holistic” vectors) reach excellent performance
when used in the task of finding the best single-word paraphrase for a
noun phrase.

Together, these results suggest that, at least for simple phrases, we
can indeed harvest meaningful examples of how we would want the out-
put of composition to look like directly from the corpus. The relative
success of our method in predicting human intuitions about full sen-
tences (see Section 4.2 below) suggests that meaningful training vectors
can also be harvested for simple sentential constructions, since induc-
ing representations for verbs (necessary to handle sentences) involves
extracting example subject-verb and subject-verb-object vectors. Al-
though the relevant techniques are introduced below, we discuss some
issues raised by these “bare-bone” sentence vectors here, since they per-
tain to the general topic of the current section, namely the role played
by corpus-extracted examples in our approach.

First, some have objected that our method might work for simple in-
stantiations of a target construction, but how about complex ones? We
might be right, the objection goes, that large corpora contain enough
informative examples of “spiders chase ladybugs” to build a meaning-
ful example vector for this bare-bone subject-verb-object construction.
However, how would you ever expect to extract a meaningful corpus-
based vector for “sneaky black spiders quietly chase cute little ladybugs
in the midnight garden”? This objection forgets the very mechanisms
of compositionality our entire framework rests upon, and confuses the
corpus-extracted phrase vectors needed for learning (that only requires
a small set of bare-bone instantiations of the target construction) with
the vectors representing arbitrarily complex structures we can derive
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once our compositional system has been trained. After the system has
been trained, a complex sentence like the one above can be constructed
in steps by applying the relevant composition rules: recursive adjective
modification to build “sneaky black spiders” and “cute little ladybugs”
vectors, adverbial modification to derive a quietly chase tensor from
chase, multiplication of the resulting transitive verb tensor by the ob-
ject and subject vectors to derive the basic transitive sentence (see
below), etc. Each of these rules can be trained from the simplest in-
stantiations of the corresponding constructions, for which we should
be able to find a su�cient number of training examples in the corpus:
For example, the chase tensor will be learned from simple example
subject-chase-object vectors such as the one for “spiders chase lady-
bugs”. There will never be the need to extract vectors directly from
the corpus for complicated but composite structures such as the larger
“sneaky black spiders” sentence above. It only makes sense to derive
the latter compositionally.50

A related objection is that the corpus will contain few bare-bone
sentences of the “dogs bark” or “spiders chase ladybugs” kind, that we
need to learn verbs by regression, since real-life sentences are typically
more complex than this (again, see below for the actual learning proce-
dure). This objection overlooks the fact that a “spiders chase ladybugs”
example vector can be extracted from sentences of any complexity, as
long as they contain spiders as subject, chase as (main) verb and lady-
bugs as object, with all other lexical material in the sentence potentially
treated as context for the target phrase. For example, if “sneaky black
spiders quietly chase cute little ladybugs in the midnight garden” does
occur in our training corpus, then during training we will treat it as a
context in which “spiders chase ladybugs” occurs, and as evidence that
it co-occurs with sneaky, black, quietly, cute, etc., which is precious in-
formation for constructing the corpus-based “spiders chase ladybugs”
vector (see also the analogous “boy kissed girl” example we discussed
at the beginning of Section 3).

We conclude our discussion of the corpus-extracted phrases we use in
learning with some conjectures about the role of such example phrases
once the compositional system has been trained. After learning, should
we throw the example phrase vectors away, and prefer the composi-
tional route in any case? To take a simple case, suppose we use the red
car vector as training example to learn the red function. Given that we
have extracted the vector during training, if we later need to use a dis-

50Still, we do not want to deny that even for skeletal sentences with a subject-
verb-object structure, we might incur into data sparseness problems. We briefly
address the issue towards the end of this section.
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tributional representation for red car, should we use the training vector
directly extracted from the corpus or generate it anew by multiplying
the estimated RED matrix by car? This is an open question.

Note that, although we use corpus-extracted phrase and sentence
vectors to train distributional functions (and we just argued that they
are of su�cient good quality to motivate this choice), it is not the case
that corpus-extracted vectors (when available at all) are necessarily of
a better quality than their composed counterparts. In Baroni and Zam-
parelli (2010), we have shown examples where the nearest neighbour
of a composed AN vector is more reasonable than that of the corre-
sponding corpus-derived vector. For example, the nearest neighbour
of composed special something is special thing, that of corpus-derived
special something is little animal ; the nearest neighbour of composed
historical thing is historical reality, the one of its corpus-derived coun-
terpart is di↵erent today. We hypothesize that, in such cases, the corpus
did not contain su�cient information to create a good representation
of the phrase (e.g., because the phrase is too rare). Thus, applying the
distributional adjective function, that has been trained on many more
examples, to the noun vector produces a better approximation to the
meaning of the phrase than the one we get out of direct evidence (in the
limit, the claim becomes trivial; a corpus-extracted vector representing
a phrase that never occurs in the corpus, that is, a vector of 0s, will
certainly be worse than its compositionally derived counterpart).

On the other hand, at least in certain cases both corpus-derived
and composed vectors have a role to play. An obvious case is that of
idioms.51 A corpus-derived vector for red herring will probably have
neighbours related to its “misleading cue” sense. On the other hand,
the output of RED⇥ herring will probably be a vector for the literal
colored-fish meaning. An English speaker will be aware of the idiom, but
she can also compositionally understand red herring as referring to the
colored fish (indeed, the general consensus in psycholinguistics is that
whenever an idiom is encountered, it is also automatically processed via
a compositional route; see Cacciari 2012). By providing (where possible)
both directly corpus-derived and composed representations of the same
phrases, our approach can capture the same dichotomy.52

51Note that we are speaking here of completely opaque idioms of the red herring
and kick the bucket sort. We expect corpus-derived examples to provide enough
evidence for our approach to pick up any systematic semi-lexicalized or metaphorical
pattern, such as the political usage of the adjective red to refer to socialism. Indeed,
as mentioned above, the compositional system for AN meanings of Baroni and
Zamparelli (2010) performed particularly well with highly polysemous adjectives.

52Relatedly, automatically scoring the degree of semantic opaqueness of a phrase
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Learning higher-order tensors

Having shown how regression can be used to estimate the weights of
matrices (second-order tensors) and argued that corpus-extracted ex-
amples of the relevant output constructions are a suitable target for
regression learning, we turn now to how this approach can be extended
to functions of more than one argument. Recall that such functions are
encoded in higher-order tensors (an n-argument function is encoded in
an n+1-th order tensor), and thus the goal of regression is to estimate
the values to be stored in the cells of such tensors.

In particular, when a function returns another function as output,
e.g. when it acts on a vector and generates a matrix, we need to apply
a two-step regression learning method, inducing representations of ex-
ample matrices in a first round of regressions, and then using regression
again to learn the higher-order function.53

Grefenstette et al. (2013) illustrated this for transitive verbs. An in-
transitive verb is naturally modeled as a VP, that is, a function from
a DP (the subject) to a sentence. A transitive verb, then, is a function
from a DP (the object) to a VP, i.e., to a function from DPs to sen-
tences.54 Let’s go back to our toy DP semantic space of 4 dimensions
(as in the “some” example of the previous subsection) and let’s take
sentences to live in 2-dimensional space. Hence, a VP is a 2⇥4 matrix.
For example, both jump and “eat cake” are matrices of this shape.55

A transitive verb such as eat is then a third-order (2 ⇥ 4) ⇥ 4 tensor,
that takes an object DP vector (e.g., cake) to return the corresponding
2⇥ 4 VP matrix (“eat cake”).

To learn the weights in such tensor, we first use regression to ob-
tain examples of matrices representing verb-object constructions with
a specific verb. These matrices are estimated from corpus-extracted ex-
amples of <subject, subject verb object> vector pairs (picking, of course,
subject-verb-object structures that occur with a certain frequency in
the corpus, in order to be able to extract meaningful distributional
vectors for them). After estimating a suitable number of such matrices
for a variety of objects of the same verb (e.g., “eat cake”, “eat meat”,
“eat snacks”), we use pairs of corpus-derived object vectors and the

has recently been proposed as a benchmarking task for distributional semantic mod-
els (Biemann and Giesbrecht 2011).

53Georgiana Dinu (p.c.) has developed a method to estimate higher-order tensors
in just one step: However, the method requires the same training data as the multi-
step method, that is conceptually simpler.

54In the conclusion, we will come back to some important issues pertaining to
this treatment of verbs, such as how to handle changes in argument structure.

55Like Grefenstette et al. (2013), we ignore for purposes of all examples discussed
in this subsection the inflection of the verb and number of nouns and DPs.
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EAT
MEAT

EAT
MEAT

EAT
PIE

EAT

dogs

cats

dogs.eat.meat

cats.eat.meat

STEP 1: ESTIMATE VP MATRICES

STEP 2: ESTIMATE V TENSOR

EAT
PIE

boys

girls

boys.eat.pie

girls.eat.pie

meat

pie

training example (output)

training example (input)

function to estimate

FIGURE 3: Estimating a tensor for eat in two steps. We first estimate
matrices for eat meat, eat pie, etc., by regression on input subject and
output subject-eat-object vector pairs (directly extracted from the cor-
pus). We then estimate the tensor for eat by regression with the matri-
ces estimated in the first step as output examples, and the vectors for
the corresponding objects as input examples (from Grefenstette et al.
2013).

corresponding verb-object matrices estimated in the first step as input-
output examples in a second regression step, where we determine the
verb tensor components. The two-step estimation procedure is schemat-
ically illustrated for eat in Figure 3 (from Grefenstette et al. 2013). Of
course, after the eat tensor has been estimated, it can be used to gen-
erate transitive sentences with subjects and objects that were not used
in the training phase.

Next, let us consider the most complex case, that is, that of a higher-
order function that takes other functions both as input and as output.
In this case, we will first use regression to construct examples of both
the input and output functions (e.g., matrices), and then use these
examples to train the higher-order tensor we are interested in. Let’s go
back to the example of the relative pronoun which that we discussed
in Section 3.4 above. We concluded there that which, as a function
from VPs onto noun modifiers, is a fourth-order tensor mapping input
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VP matrices onto output noun-modifier matrices. In particular, in our
toy lexicon we took which to be a third-order tensor with shape (3 ⇥
3) ⇥ (2 ⇥ 4) mapping from 2 ⇥ 4 input VP matrices to 3 ⇥ 3 output
noun-modifier matrices.

In this case, the first training step will generate examples of both the
input and the output matrices. For the input VPs, training will proceed
exactly like with transitive verbs (see Figure 3) to derive a set of VP
matrices (2⇥4), that in this case can contain di↵erent verbs and be both
transitive and intransitive (“eat meat”, “chase cats”, sing, jump, . . . ).
The training of output noun modifiers (3 ⇥ 3) is similar, but here the
corpus-extracted example vectors will be pairs of <noun, noun which
VP>. For example, the “which eat meat” matrix will be trained from
corpus-extracted vectors of pairs such as <dog, dog which eats meat>,
<cat, cat which eats meat>, etc. In the second phase, we estimate the
which tensor by optimizing, via regression, the mappings between VP-
matched input-output matrix pairs trained in the first phase, e.g., <eat
meat, which eat meat>, <sing, which sing>, and so on.

Two problems loom ahead: data scarcity and computational load.
Consider the first. As the complexity of the structures to be learned
grows, it becomes increasingly di�cult to find a su�cient number of
frequent examples of their inputs and outputs in order to obtain mean-
ingful training vectors from the corpus. In pursuing our regression-
based program for learning compositional semantics, it will thus be
crucial to devise ways to harvest and optimally exploit high-quality
training examples for all structures of interest. This might involve, on
the one hand, using regression methods that can learn successfully from
very few examples, and on the other, coming up with ways to extend
the training sets exploiting similarities between linguistic expressions
to ‘share’ training examples across distributional functions. Intuitively,
good training examples for the “which eat pie” matrix could also be
recycled as training examples when learning “which eat cake”. We en-
vision the use of clustering methods to discover when two forms are
su�ciently close to be pooled together in the training phase.

A second problem is computing power and storage needs. Given
realistically-sized input vectors, the number of components to estimate
in the corresponding higher-order tensors is humongous. If we assume
(like Grefenstette et al. 2013 did, see Section 4.1 below) that nouns,
DPs and sentences live in 300-dimensional spaces, a transitive verb is a
(300⇥ 300)⇥ 300 tensor, that is, it contains 27 million components. A
relative pronoun, being a (300⇥ 300)⇥ (300⇥ 300) tensor, contains 8.1
billion components. Luckily, there aren’t as many relative pronouns as
there are transitive verbs, since structures of this size are pushing the
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boundary of what can be stored and manipulated with reasonable e�-
ciency given our (and we suppose most linguists’) computational power.
However, a somewhat technical but important consideration must be
made here. The giant tensor is derived from training examples of much
smaller sizes and often correlated with each other. Hence, by using algo-
rithms that might exploit similarities in input and output components
to e↵ectively reduce the dimensionality of the problem, there will be a
lot of “redundancy” in its cells. Furthermore, it will be probably pos-
sible to express the values they contain as weighted combinations of
a much smaller set of vectors. Thus, a careful implementation of both
learning and generalized matrix-by-vector product application might
be able to sidestep some of the worse computational issues.

Learning functions that are not triggered by words

Since our learning procedure only requires examples of the input and
output to a composition function, our system can also be extended
to learning composition processes where the functional element is not
an autonomous word. For example, the semantics of an a�x such as
-ment can be learned from training pairs such as <contain, contain-
ment>, <endorse, endorsement>, etc. (the derivation of Italian from
Italy discussed in Section 3.4 above works analogously).56 In the ML
models, on the other hand, one would need to extract a vector for -ment
or -(i)an, which is very problematic.

Actually, composition is not even constrained to be associated to
any phonological material at all. A simple case is that of “null deter-
miners”, needed to account for the fact that dogs and meat are nouns,
but in “dogs eat meat” they are used as full noun phrases (DPs, in
our notation). Again, this is not a problem for our approach, where we
can train a null determiner function that takes as input noun vectors
(extracted from all contexts in which the nouns occur) and, as output,
vectors for the same nouns constructed from those contexts only where
they are used as full DPs.57 A similar strategy can be followed for the
“invisible” relative pronoun in constructions such as “the meat dogs eat
(is very fat)”. We do not see how composition triggered by phonolog-
ically empty elements (equivalently: purely structural configurations)
could be handled by the ML approaches.

Of course, for such cases to work properly within our framework,

56This approach to the semantics of a�xes was in fact already proposed in Gue-
vara (2009).

57In the fragment of grammar to be presented next, we instead adopt the simpler
and less linguistically informed strategy to treat bare plurals, such as dogs in “dogs
bark”, as primitive elements —corpus-extracted vectors— of category DP.
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we will need to make sure that the relevant rules are automatically
triggered in the appropriate contexts by specific structures produced
by the syntactic parser.

3.6 Syntax-semantics interface

So far we have presented the general intuitions and the technical aspects
behind our proposal on the semantic modeling of natural language ex-
pressions. Now, we will look at how our semantic model interacts with
syntactic analysis to scale up to account for sentence structure. We
base our proposal on Montague’s lessons and on the type-logical view
of the syntax-semantics interface that has been developed starting from
his Universal Grammar (Montague 1970b). Following this tradition,
we will adopt Categorial Grammar (CG) to account for syntactic con-
structions and employ the formal techniques of the type-logical view
to define a tight connection between syntax and semantics. Note that
the same syntactic structures can also be used as the basis to construct
standard referential representation of meaning, in a parallel distribu-
tional/referential approach to semantics.

To capture the relation between the syntax and the semantic level,
the type-logical view uses the following steps: define an atomic set of
syntactic categories and of semantic types based on which functional
syntactic categories and complex semantic types are built; define a
recursive mapping between the syntactic categories and the semantic
types; assign typed meaning representations to each lexical entry, where
the types are those of the corresponding domain of interpretation; as-
sign to the lexical entries syntactic categories that correspond to their
semantic types. This procedure allows one to proceed in parallel in the
composition of the syntactic and semantic constructions.

Besides this theoretical advantage, employing a CG framework has
practical benefits, because of the existence of a fast and wide-coverage
syntactic parser, namely C&C parser(Clark and Curran 2007), based
on (Combinatory) Categorial Grammar(Steedman 2000). This parser
is also integrated with Boxer, a system that builds a referential se-
mantic tier using Discourse Representation Structures (Curran et al.
2007), thus allowing us to maintain the same large-scale approach that
characterizes lexical DSMs in our compositional component, and pro-
viding a concrete infrastructure for the possibility of parallel distribu-
tional/referential representations built from the same semantic struc-
tures. Of course, other lexicalized formal grammars could also be con-
sidered; CG is just the one that might allow the integration in the most
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straightforward way.58

In denotational semantics the semantic types give the type of the
domain of denotation (e.g., the domain of entities De, containing the
denotation of proper names, or the domain of functions from entities
to truth values, D(e!t), used for intransitive verbs, verb phrases, and
nouns). In a DSM, we take domains to stand for the distributional
semantic spaces in which the expressions live, and, as in denotational
semantics, we take these semantic spaces to be typed. The type records
the shape of the tensors in the space (plus the associated index labels)
as discussed in Sections 3.3 and 3.4. We mark atomic types with sub-
script indices standing for the shape of the items in the corresponding
semantic space. Suppose, for example, that the noun dog lives in a
10,000-dimensional nominal space; then, its distributional representa-
tion will be a vector in this space and will have type Cn10000 , where
we use C to remind ourselves that this is a type based on Contextual
information, the subscript n points to the nominal space (character-
ized by a specific index-to-labels mapping) and the subsubscript to the
dimensionality of the space.

Similarly, functional types will correspond to space mappings (linear
transformations) and will be represented by di↵erent tensors: matrices
(that is, second order tensors) for first order 1-argument functions,
third order tensors for first order 2-argument functions, etc. In general,
we assume that words of di↵erent syntactic categories live in di↵erent
semantic spaces. Note that we are not assuming that the complexity
of the formal semantic type must correspond to a corresponding com-
plexity in the shape and order of the corresponding DSM structure. A
salient case is that of nominals. In Montague Grammar proper names
are of type e (entities), but quantified DPs are of type (e ! t) ! t
(sets of properties). In our current experiments we do not cover proper
names, due to the ambiguity issues pointed out in Section 2.6, but
we treat quantificational DPs as first order tensors, i.e., vectors, al-
beit potentially living in a di↵erent space from that of nouns.59 Note,

58Our choice of CG (and in particular Combinatory CG) over Dependency Gram-
mar, another widely-used parsing framework in computational linguistics (Kübler
et al. 2009; Mel’chuk 1987), was also motivated by the fact that dependency-parsed
structures are not binary, and do not make explicit the mutual scope of modifiers
(in a parse of “the hypothetical high percentage of voters”, the, hypothetical and
high would all be dependent on percentage, without any indication but word order
that hypothetical scopes over high, but not vice-versa.)

59This might seem untenable in a view of semantics in which determiners are
diadic functions over a restrictor and a predicate. As we have seen in Section 3.4,
our determiners are unary functions over Ns, while VPs are unary functions over
DPs. This approach is not feasible in Montague Grammar because the operation
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moreover, that in denotational semantics the domain of interpretation
is partially ordered by the inclusion relation (✓) holding within the
denotational sets. It is on the basis of this order that the logical en-
tailment of phrases and sentences is computed; in our case semantic
similarities are computed based on similarities of tensors living in the
same space, as discussed in Section 3.4. Thanks to this notion of “typed
similarity”, once the whole framework is implemented, we believe that
we can arrive to draw richer (or more “natural”) kinds of reasoning
based on distributional representations plus logical entailment, rather
than on logical entailment alone.

Given the programmatic nature of this paper, we have touched upon
many constructions for which a full computationally viable analysis is
still underspecified. However, following the Montagovian tradition, we
also want to give the reader a precise idea of how our system could
handle a fragment of English. In the lexicalized view of CG, this means
defining the lexicon out of which sentences of the fragment are built.

The lexicon we chose is a representative sample, in that it includes
expressions with primitive types, functions over primitive types and
functions over functions.

Most compositions in natural language are ‘local’, in that they take
place between adjacent expressions, and involve first order n-functional
categories. However, all human languages have instances of non-local
dependencies. In some of these, the elements that should combine are
not adjacent, but still within the same tensed sentence (“clause-bound
dependencies”); in others, the dependency is between elements that
can be separated by arbitrary amount of material (“long-distance de-
pendencies”). In our fragment we will consider a single, syntactically
simple but semantically challenging case of clause-bound non-local de-
pendency, that of relative clauses with object gap and an overt relative
pronoun.

In an object relative, like “a cat which dogs chase runs away”, the
noun cat plays the double role of being the subject of the main clause
and the object of the relative clause. As an object, it depends on the
verb chase to which it is not juxtaposed. From a formal semantic view-
point, the relative pronoun is represented by the lambda expression in
(7)which intersects two properties, e.g., [[cat]] \ [[dogs chase]] (as we have

VPs perform on their subject is extremely simple: set membership. Thus, John runs
will be true in a model M i↵ it is true that j’ 2 [[run]]M . In our approach, a VP
function can be far more sophisticated (like the determiner, it takes an input vector,
but of course it does not return just a binary value, “true” or “false”). So, while it
is an empirical question whether our current approach is tenable in the long run,
we do not see strong theoretical motivations against it.
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seen in Section 3.4), (8)[a] gives the type for which and (8)[b] spells out
how which combines with the property denoted by the gapped clause
it C-commands60 (“dogs chase”), then with the property denoted by
cats in a sister node, to yield the property denoted by “cat which dogs
chase”.

(7) �X(e!t).�Y(e!t).�xe[X(x) ^ Y (x)]

(8) a. which 2 (e ! t) ! ((e ! t) ! (e ! t))

b. (which([[dogs chase]])([[cats]])

Now that we have laid the ground, we can start introducing the
syntactic categories, the semantic types, and the fragment we will be
dealing with.

We use small letters (e.g., a) for atomic syntactic categories, capital
letters (e.g., A and B) for complex syntactic categories, and Type for
the function mapping syntactic categories to semantic types:61

Type(a) = Ca (for a atomic)
Type(B\A) = Type(B/A) = CA ! CB

N (noun), DP (determiner phrase) and S (sentence) are our atomic
syntactic categories, mapped to indexed types as follows: Type(N) =
Cni , Type(DP ) = Cdpj , Type(S) = Csk . The types of the complex cat-
egories are obtained by the definition above. We use a fragment of
English whose vocabulary consists only of words in the syntactic cat-
egories listed in Table 6, which are representative of the varieties of
functional categories we have discussed above. For sake of clarity, in
the table, next to the syntactic category, we indicate both the cor-
responding distributional semantic type, as well as the shape of the
corresponding distributional representation.

Relative pronouns (RelPr) in subject or object relatives should ide-
ally receive the same syntactic category in CG. This can be done us-
ing other connectives besides the traditional functional ones (\ and
/), but since our interest is in the syntax-semantics interface rather
than in syntactic issues per se, we adopt the easiest CG solution and
consider two syntactic categories: (N\N)/(S\DP ) for subject gap and
(N\N)/(S/DP ) for object gap, both mapping to the same semantic
type.

While many constructions are not captured in the fragment, given
that we can harvest thousands of distributional representations for lex-

60A node N C-commands another node M if it does not dominate it nor it is
dominated by, and the first branching node that dominates N also dominates M
(Reinhart 1976).

61We are adopting Steedman’s (2000) CG notation.
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ical items from corpora, the fragment actually covers a huge amount of
sentences, including the following:

(9) The sneaky black spiders with long hairy legs that the boys love
ate the cute little guinea-pig that the girls bought.

Expressions are composed by using the CG syntactic tree (or deriva-
tion) as the backbone and by defining a correspondence between syn-
tactic and semantic rules. In Montague Grammar, two main types of
semantic rules are used: function application and abstraction. The syn-
tactic correspondence of abstraction is also used in the logic version
of CG, namely in the Lambek calculi (Lambek 1961; Moortgat 1997),
and a restricted instance of it (type raising) is also present in CCG,
the combinatory version of CG (Steedman 2000). In short, abstraction
is used mostly for two cases: non-local dependency and inverse scope.
In the current study, we are not interested in scope ambiguities since
we believe that they are a challenge for syntacticians rather than se-
manticists; once the grammar provides the right representation for an
ambiguous sentence (i.e., a disambiguated ‘logical form’) the semantic
operations should be able to compute the proper meaning straightfor-
wardly. Hence, in what follows we will only look at abstraction cases
motivated by non-local dependencies, and in particular at the case of
relative pronouns that extract an object from relative clause.

Local dependencies

Since in natural language function-argument order matters, CG has
two function application rules: backward (when the argument is on the
left of its function) and forward (when the argument is on the right of
its function.)

On the DSM side, the sentences in the fragment we are considering
require the following function application cases.

(10) a. A matrix (2nd order tensor) composes with a vector (ADJ
N e.g., “red dog”; DET N e.g., “the dog”; DP IV e.g., “the
dog barks”, “dogs bark”);

b. A 3rd order tensor composes with two vectors (DP TV DP,
“dogs chase cats”; N Pre DP, “dog with tails”; DP CONJ
DP, “dogs and cats”);

c. A higher-order tensor composes with a matrix ((c1) Rel IV,
e.g., “which barks”; Rel TV DP, “which chases cats”; and
(c2) Rel DP TV, “which dogs chase”)

To emphasize the relation with the Montagovian framework, we be-
gin by building a labeled syntactic tree. The labels record the opera-
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tional steps and are therefore called proof terms or “derivation terms”.
A proof term can then be replaced with the appropriate correspond-
ing semantic representation. Under the classic Montagovian view, it
will be replaced by �-terms standing for the meaning of the words
(like the lambda terms discussed before for the relative pronoun). In
a Continuation Semantics, it would be replaced by �-terms that take
the context into account (see Bernardi and Moortgat 2010; Barker and
Shan 2006). In our setting, we replace proof terms with the correspond-
ing tensors. To help reading the proof terms, we use the @ symbol to
indicate the application of a function to an argument (f@a). For in-
stance, when parsing the expressions “dogs bark”, “dogs chase cats”
and “which chase cats”, CG produces the structures and terms in the
trees in (11)and (12).

(11) a. S : (X@Y )

S\DP : X

bark

DP : Y

dogs

b. S : (X@Y )@Z

S\DP : X@Y

DP : Y

cats

(S\DP )/DP : X

chase

DP : Z

dogs

(12) N\N : Z@(X@Y )

S\DP : X@Y

DP : Y

cats

(S\DP )/DP : X

chase

(N\N)/(S\DP ) : Z

which

We replace the variables with the corresponding DSM representa-
tions obtained from corpora and compute the vectors representing the
sentences. In particular, in (11)[a] the labels X and Y are replaced
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with the matrix BARK and the vector dogs, respectively, giving
BARK ⇥ dogs; whereas in (11)[b] X is replaced by the 3rd order
tensor representing the meaning of chase, and Y and Z are replaced
with the vectors representing the meaning of dogs and cats, respectively.
Hence, we obtain (CHASE ⇥ cats) ⇥ dogs. Similarly for (12), where
we obtain WHICH⇥ (CHASE⇥cats). Once we have built this sort of
representation of the sentence, we can compute its meaning using the
generalized matrix-by-vector product introduced in Section 3.3.

Crucially, our vectorial representations have been built on the out-
put of a CG parse of the sentence, a representation commonly used in
formal semantics as input to build the logical form of sentences compo-
sitionally (van Benthem 1986; Moortgat 1997; Steedman 2000). Indeed,
as we have mentioned above, the same CCG parser that produces the
trees we use for our compositional operations is integrated with the
logic-based Boxer system (Curran et al. 2007). Thus, we o↵er a clean
and practical implementation of the parallel construction of logical and
distributional semantic representations of sentences. A representation
that, as we are about to see, also extends to the non-local dependency
case we handle in our fragment.

Non-local dependencies

So far we have been dealing with local dependencies: the dependent
element was always juxtaposed to the head. In CG terms, we can say
that the function always found its syntactic argument next to it. We will
consider the case of non-local dependency that is part of our fragment
of English, namely the one of relative clauses with object gap and an
overt relative pronoun, introduced above. As an example of this clause-
bound dependency, we consider the sentence “a cat which dogs chase
runs away” in which the object position of chase is missing, and dog
plays the role of the object of the relative clause verb chase while being
the subject of the main clause verb runs.

Besides the forward and backward rules used so far, CG (or more
exactly, the logical version of it) is endowed with another kind of rule.
We have seen that the forward and backward rules correspond to the
application of a function to an argument; the third rule type corre-
sponds to the abstraction of a variable from a term, in other words,
to hypothetical reasoning. In the parsed linguistic structure we are con-
sidering, the verb chase requires an object (a DP) to its right, but no
object is provided next to it.The parser, reasoning by hypothesis, as-
sumes there is a DP juxtaposed to chase and composes the verb with
this hypothetical DP, then it continues its composition process by com-
posing the verb phrase thus obtained with the subject dogs found to
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its left. These steps are represented in (13), where we mark the hypo-
thetical object by hyp, and we label the nodes with proof terms as done
so far. The clause with the hypothetical object, “dogs chase hyp”, is
represented by the proof term (Z@X)@Y .

(13) S : (Z@X)@Y

S\DP : Z@X

DP : X

hyp

(S\DP )/DP : Z

chase

DP : Y

dogs

As explained above, in denotational semantics the relative pronoun
which acts as a modifier of the noun cat, restricting the set of cats to
those that dogs chase. Hence, it composes first with the property “dogs
chase” and then with the noun cat. As we have already seen, it has
semantic type (e ! t) ! ((e ! t) ! t)—a function from properties to
properties to truth values. The CG category that expresses the same be-
haviour at the syntactic level is the higher-order two-argument category
(N\N)/(S/DP) which requires a sentence missing a DP on the right-
most position to return the category N\N. Hence, the parser encoun-
ters a category mismatch: It has the task of composing (N\N)/(S/DP)
(which) with the tree of category S corresponding to “dogs chase hyp”.
The tree of category S, however, contains an hypothesis of category
DP—it would be a sentence if a DP had been provided. The parser can
now withdraw the hypothetical DP, as illustrated in (14), and build the
tree of category S/DP. The rule that allows this step is the one-branch
rule encoding hypothetical reasoning. The lambda calculus goes step
by step with this hypothetical reasoning process. Besides the function
application rules we have used so far, it consists of the abstraction rule
that abstracts from the term (Z@X)@Y (namely the term assigned to
the S tree –hence, a term of type t), the variable X assigned to the
hypothetical DP (hence, a term of type e), building the lambda term
�X.(Z@X)@Y (a term of type (e ! t)). The next step is again the
application of a function (W of type (e ! t) ! ((e ! t) ! t)) to an
argument (the lambda term of type (e ! t) we have just built).
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(14) N\N : W@(�X.(Z@X)@Y )

S/DP : �X.(Z@X)@Y

S : (Z@X)@Y

S\DP : Z@X

. . .(S\DP )/DP : Z

chase

DP : Y

dogs

(N\N)/(S/DP ) : W

which

How do we deal with the lambda abstraction step if we replace proof
terms with DSM representations instead of their denotational counter-
parts? We sidestep this question by suggesting a solution that implicitly
employs the rule of associativity. Through this rule, when the parser
fails to find the DP object on the right of the relative clause verb, it can
replace the category of the verb (S\DP )/DP with (S/DP )\DP since
the two categories are equivalent modulo associativity.62 This change of
the category allows the verb to combine first with the subject on its left
to return a predicate that looks for the object to its right. As a conse-
quence, the tree corresponding to “dog chase” is already of the correct
S/DP category to be taken as argument by the relative pronoun which.

One reason for suggesting this solution is that we have a nice,
ready-to-use solution on the tensor composition side. The proof term
recording the steps of the tree structure assigned to which dogs chase
(15)mostly consists of function applications of the kinds discussed so
far; the ‘one branch step’, which changes the category of the transitive
verb, is the only new one. This syntactic step has a natural distri-
butional semantic counterpart in the tensor transposition operation
introduced at the end of Section 3.3, which gives a general procedure
to generate a transposed tensor such that:

(T ⇥ v)⇥w = (T T ⇥w)⇥ v

62Associativity causes over-generation problems. However, its application could be
controlled by employing the multi-modal version of CG (Moortgat 1997). Since our
focus is on the composition of the distributional semantic representations involved
in such constructions, we will overlook the syntactic issues. Our semantic analysis
or a close variation of it could be connected to di↵erent syntactic proposals in the
literature.
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This comes in very handy, since it allows us to transform a (pre-
trained) transitive verb tensor that would normally be multiplied by
an object and then a subject into the transposed form, that can take
the subject first, and the object later, producing the same result. In
the tree, we represent this semantic rule as taking the term X and
yielding the term XT . Now we can replace the proof term with the
actual distributional representation, obtaining WHICH⇥(CHASET ⇥
dogs). This can later modify the vector representing cat.

(15) N\N : Z@(XT@Y )

S/DP : XT@Y

(S/DP )\DP : XT

(S\DP )/DP : X

DP : Y

(N\N)/(S/DP ) : Z

Among the challenging class of non-local phenomena, we have re-
stricted our attention to relative clauses involving object abstraction
from its outmost position to the main sentence that immediately dom-
inates the relative, a phenomenon that, as far as we are aware, is al-
ready more linguistically complex than anything studied so far by the
compositional distributional semantics research community. We will of
course have to verify whether our current solution, besides being con-
ceptually simple, is also supported by empirical evidence, and whether
it can be extended to other non-local dependencies. Note that in this
transposition-based approach the relative clause changes its shape as a
result of abstraction: it goes from being a vector to being a matrix, so
the heads that could subcategorize for it in one shape cannot straight-
forwardly do so in the other. This means, for instance, that the that in
(16)[a] cannot have the same type as the one in (16)[b] (the first would
take a sentence vector, the second a matrix, from the transposed verb).
The grammatical rules used so far (function application, abstraction
and associativity) derive the type-shifting rule that maps the first that
into the second (syntactically, from an (S/S) to an ((S/DP )/(S/DP ))).
They derive also the rules needed for the verb claim in (16)[b] to take
a clause missing the object instead of the complete sentence it takes
in (16)[a]. The derived shifting of types would allow who in (16)[b] to
work just as which in 14. We have not investigated whether for these
type-shifting rules there exists a ready transformation as for the case
discussed above, if this is the case, we will consider extending our frag-
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ment to these more complex long-distance dependencies.63

(16) a. People claim that [girls love this boy].

b. A boy who people claim that [girls love ] arrived.

It is also possible that a general solution for long-distance cases will
come not from the pure DSM composition and transposition rules, but
by reconstructing the arguments in their base position and calculat-
ing ‘localized’ vectors to be used as modifiers. For instance, the long
distance relative in (16)[b] could be rendered by first computing the
vector for those tokens of the lemma boy which appear in the context
of (17)(and possibly, related sentences, to ease data sparcity).

(17) People claim that girls love DET boy(s)

Next, this localized vector would be combined (e.g., by intersective
modification) with the general vector for boy in the sentence a boy
arrived, yielding an approximation of the meaning of (16)[b]. Exploring
this and similar mechanisms will be a task for future research.

4 Current empirical support for the functional
approach to distributional semantics

The aim of this paper is to sketch a program for compositional dis-
tributional semantics based on function application and to show how
it could be applied to an extended fragment of English that includes
grammatical words. But there is already evidence that the approach
is empirically feasible, at least when it comes to modeling phrases and
simple sentences made of content words. In this section, we briefly re-
view the relevant empirical work.

4.1 DSM implementation and composition methods

We start by providing a succinct summary of the technical aspects of
the compositional DSMs used in the experiments that follow; please
refer to the original publications for more detail. These DSMs are har-
vested from a corpus of almost 3 billion running words containing all the
documents from the British National Corpus (see Section 2.1 above), a
dump of the English Wikipedia and a large sample of other Web docu-
ments. The distributional space in which the vectors live is defined by

63Although our transposition approach could be a solution for relatives with a
gap in an argument position, as far as we can see, it would not work when all
the arguments of the verb are saturated. For instance, it would be insu�cient to
deal with, e.g., the way in which Marco runs, where the pronoun is extracted from a
manner modifier. A conceivable solution would be to take modifiers to be additional
arguments of the verb. A verb with a missing “manner argument” would in this case
be transposable, though its dimensionality would increase.
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co-occurrence within sentence boundaries with the 10,000 most com-
mon lemmatized content words in the corpora (Baroni and Zampar-
elli 2010, and Vecchi et al. 2011, include nouns, adjectives and verbs;
Grefenstette et al. 2013, and Boleda et al. 2012b, also include adverbs).
The raw counts are transformed into Mutual-Information-based asso-
ciation scores (see Section 2.1) and the 10,000 original components are
compressed into 300 with dimensionality reduction techniques (again,
refer to Section 2.1 above).64

Across all experiments, the functional model we are proposing is
contrasted with the (unweighted) additive and multiplicative models
of Mitchell and Lapata. Vecchi et al. (2011) and Boleda et al. (2012b)
also test the model proposed by Guevara (2010) (see Section 6 below).
Boleda et al. (2012b) also implement the dilation model of Mitchell
and Lapata (2010) (see footnote 22 above). Grefenstette et al. (2013)
include, in the transitive tests, the Kronecker model that was the best
performer in Grefenstette and Sadrzadeh (2011b) (and that is not de-
fined for intransitive verbs).

4.2 Intransitive and transitive sentences

Mitchell and Lapata (2008) introduced a data set of similarity judg-
ments for 120 intransitive sentence pairs. The pairs, rated by 49 sub-
jects on a 1-7 scale, were constructed to maximize the similarity or
dissimilarity between the sentences by exploiting verb ambiguity. For
example, one of the pairs that received high similarity ratings was “the
child strayed”–“the child roamed”; one pair with low ratings was “the
child strayed”–“the child digressed”. By replacing child with discus-
sion, the opposite intuitions are obtained. As already discussed in Sec-
tion 2.3 above, these stimuli tap into systematic polysemy, and in par-
ticular co-compositional aspects of verb meaning. All sentences were
presented with the definite determiner and in simple past format to
the subjects, but the constant determiner and tense are ignored by
the composition models.65 Grefenstette et al. (2013) implemented the
approach to composition with intransitive verbs that we sketched in
Section 3.4 above. Given the concrete DSM we described in the previ-
ous subsection, in which all vectors live in 300-dimensional space, they
derived 300-component sentence vectors by multiplying 300⇥300 ma-

64For technical reasons, the multiplicative model requires a di↵erent method of
dimensionality reduction than the other models (Grefenstette et al. 2013), or no
reduction at all (the other studies except Vecchi et al. 2011).

65Given how this and the following task are set up, we ignore the distinction
between nouns and DPs, and, following Grefenstette and colleagues, we speak of
nouns when it would be probably more appropriate to speak of DPs.
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trices representing the verbs by the 300-component vectors represent-
ing the subject nouns (verb matrices were trained on example input
and output vector pairs as illustrated in Section 3.5 above). Perfor-
mance was measured by the correlation of the cosines (see Section 2
above) between sentence vectors produced by a model with the sub-
jects’ rating for the corresponding sentence pairs (if the model is good,
when subjects assign high ratings the cosine should be high, indicating
high sentence similarity, and vice versa for low ratings). Correlation
scores range from 0 for no correlation whatsoever to 1 for perfect cor-
relation (or -1 for a perfect inverse correlation). To put things into
perspective, the inter-subject correlation is of 0.40; and measuring the
similarity between corpus-extracted vectors representing the verbs only
(thus ignoring the contribution of subject nouns to meaning) achieves a
correlation of 0.06. The functional model outperformed all other com-
position methods with a correlation of 0.23 (still well below that of
human beings), with the multiplicative model coming a close second
with a correlation of 0.19.

Turning to transitive cases, Grefenstette and Sadrzadeh (2011a) con-
structed a data set of simple transitive sentences with criteria similar
to those used by Mitchell and Lapata for intransitives. Their data set
contains 200 subject-verb-object sentences rated by 25 subjects. An ex-
ample of a high-similarity pair is “map shows location”–“map pictures
location”, whereas “map shows location”–“map expresses location” is
low-similarity (compare to: “table shows/expresses results”). Grefen-
stette et al. (2013), following the functional approach, model transi-
tive verbs as third-order 300⇥300⇥300 tensors, estimated from exam-
ple data using the procedure illustrated in Figure 3 above. The tensor
is first multiplied by a 300-component object vector, giving a matrix
corresponding to the VP, which is then multipled by a 300-component
subject vector, to return the 300-component vector representing the
sentence. In this task, inter-subject correlation is at 0.62, and using
verb vectors only achieves a correlation of 0.08. Again, the functional
model outperforms all the rivals, with a correlation of 0.32. The second
best is Grefenstette and Sadrzadeh’s state-of-the-art Kronecker model
(0.25) followed by the multiplicative approach (0.23).

4.3 Adjective-noun constructions

Vecchi et al. (2011) studied a sample of the adjective-noun construc-
tions (ANs) that never occur in the 3 billion word corpus we described
above. These were rated as semantically acceptable or not by two lin-
guists, resulting in a data set containing 280 acceptable and 413 “de-
viant” ANs (examples of acceptable: blind trader, coastal mosquito, eth-
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ical trademark ; example of deviant: blind numeral, coastal subtitle, ethi-
cal sunset). Vecchi and colleagues hypothesize that the (model-derived)
vectors representing acceptable ANs will inhabit areas of the semantic
space that are more densely populated (with vectors of nouns, adjec-
tives and corpus-attested ANs) than those inhabited by the deviant
ANs: We might have not encountered coastal mosquitoes yet, since this
is a sensible concept, there are many close concepts (river mosquitoes,
coastal bugs. . . ) that we are familiar with. Consequently, the model-
derived vector for the coastal mosquitoes AN should be close to many
corpus-derived vectors. On the other hand, coastal subtitles are not just
unheard of, it is not even clear what a related concept should be. Oper-
ationally, Vecchi and colleagues measure the neighborhood density of a
vector as the average cosine of the vector with its 10 nearest neighbours
in distributional space (the denser the neighborhood, the higher this
average cosine). Under the functional view, ANs are 300-component
vectors derived by multiplying a 300⇥300 adjective matrix (trained
from corpus examples) by a 300-component noun vector. Vecchi and
colleagues found that the functional method, as well as the additive and
multiplicative models (but not Guevara’s method), correctly predicted
a significant di↵erence in density between acceptable and deviant ANs.
The functional method, moreover, predicts the largest di↵erence.66

As discussed in Section 3.4, it is possible to measure the similarity
of matrices and higher-order tensors just like we compare vectors, e.g.,
using the cosine method. Do these higher-order representations cap-
ture lexical similarity as well as traditional distributional vectors do?
A small experiment reported by Baroni and Zamparelli (2010) looks
at the specific case of (attributive) adjectives (that, in their imple-
mentation, are, again, 300⇥300 matrices mapping noun vectors to AN
vectors). The results suggest that the higher-order representations of
adjectives derived by matrix estimation are comparable and even bet-
ter than vector representations directly extracted from the corpus. The
task is to group 19 adjectives into 4 classes: color (white, red . . . ), posi-
tive evaluation (nice, excellent . . . ), time (recent, new . . . ) and size (big,
small). Baroni and Zamparelli use a standard clustering algorithm that
assigns the adjectives to classes based on the similarity of their ma-
trix or vector representations. Both the traditional vector-based and
the matrix-based representations of adjectives achieve clustering per-

66Vecchi and colleagues also consider a length-based heuristic to measure ac-
ceptability. However, they estimate the adjective matrices with a length-insensitive
criterion of fit between predicted and example output vectors. Not surprisingly, the
length-based cue (that works for the additive and multiplicative methods) does not
produce good results when using functional composition.



308 / Marco Baroni, Raffaella Bernardi and Roberto Zamparelli

formance significantly above chance, with matrices being better than
vectors (0.74 vs. 0.68 in purity, a measure of how good the automated
clustering is compared to the real classification, ranging from 1 for per-
fect clusters to values centered at 0.46 for random clustering).

Boleda et al. (2012b) tackle what is probably the most sophis-
ticated linguistic issue that has been addressed with compositional
DSMs until now, namely that of characterizing three kinds of adjec-
tival modification: intersective (white dress), subsective (white wine)
and intensional (former criminal) modification. Both intersective and
subsective constructions are restricted to those involving color terms.
From a denotational perspective, intersective adjectives (more pre-
cisely: intersectively-used adjectives) are those that produce the inter-
section of the set of entities defined by the adjective with the set of
entities defined by the noun (a white dress is a dress and a white thing).
Subsective (subsectively-used) adjectives cause the inference that the
property denoted by the noun holds of the entities being described,
whereas the property denoted by the adjective is just a proxy for a
more descriptive property, and might or might not hold in a literal
sense, with the resulting AN denoting a subset of the noun set (a
white wine is a yellow-ish sort of wine; brown bear refers to the species
Ursus arctos, not to just any type of bear which is brown; a white
paper is an exhaustive report, which might or might not be white).
Intensional adjectives do not describe entities but rather complex op-
erations that act on the intension of the noun they modify (a former
criminal was a criminal in a past state of the world, but not in the
current one). Boleda and colleagues first show that corpus-extracted
vectors for ANs instantiating the di↵erent kinds of modification show
global patterns in accordance with linguistic intuition. For example,
intensional AN vectors tend to be significantly closer than the other
types to their head noun vectors, since “intensional adjectives do not
restrict the descriptive content of the noun they modify, in contrast to
both the intersective and subsective [adjectives]” (Boleda et al. 2012b,
p. 1230). Boleda and colleagues then proceed to test how well the com-
positional models mimic linguistically sensible patterns displayed by
corpus-extracted ANs. They find that the functional approach (where,
again, adjectives are 300⇥300 matrices estimated from corpus exam-
ples) provides the best approximation (the multiplicative method also
does fairly well). Moreover, the functional approach produces composed
vectors that are nearest their corpus-extracted counterparts, not only in
the case of intersective and subsective ANs (where the additive model
also does well), but also for the more di�cult intensional adjectives
(that is, only the functional approach is able to compositionally pre-
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dict the corpus-attested distribution of, say, former criminal). Finally,
qualitatively, the functional approach generates vectors that have the
most sensible nearest neighbors. For example, the nearest neighbours
of the functionally composed artificial leg vector include artificial limb,
artificial joint and scar.

The experiments we reviewed, taken together, confirm that the func-
tional approach to composition is empirically viable, and better than
the ML mixture models and other state-of-the-art methods (although
the multiplicative model performs fairly well across the board). Still,
current data sets do not allow us to test some of the most impor-
tant predictions we made in the previous section, for example that the
functional model will be able to handle composition involving gram-
matical words, to take word order into account and to rightly compare
full sentences with di↵erent structures (the intransitive and transitive
sentences in the pairs used in the reviewed experiments have always
exactly the same structure, and indeed share the same subject and ob-
ject, with only the verb changing). Clearly, a high priority for the field
– and one we are actively pursuing – is to build larger and more varied
test sets, to truly explore the potential of more advanced compositional
models. For the time being, equipped with the theoretical framework
we developed in the previous sections and the empirical results just
discussed, we move on to motivating the compositional aspect of the
distributional semantics enterprise.

5 Motivating compositional distributional semantics

The previous sections have laid out a method to go from distributional
representations of words to distributional representations of phrases
and sentences, and presented preliminary evidence of the empirical vi-
ability of this method. We have however not yet su�ciently motivated
why we would need distributional representations of phrases and sen-
tences, as opposed to just words. We are now in the position to take
this step with the proper background.

There is ample evidence that distributional vectors capture many
aspects of word meaning and play an important role in lexical seman-
tics. Should we also expect that larger constituents are represented in
distributional space? We will start by arguing that, once you assume
that words have distributional representations, it is hard to avoid the
conclusion that phrases and sentences have distributional representa-
tions as well. We will then proceed to discuss some semantic challenges
where such representations might prove their worth, showing that they
are not only “unavoidable”, but also very useful.
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5.1 The unavoidability of vector representations of
constituents above the word

One could take the view that distributional semantics is a theory of
lexical semantics, and compositional semantics should be handled by
other means. A nicely spelled-out proposal of this sort was recently
presented by Garrette et al. (2013). Garrette and colleagues assign vec-
tors to content words (nouns, verbs, adjectives, some adverbs), but
use a (probabilistic) logical formalism to capture sentential aspects of
meaning, such as entailment between utterances. The vectors repre-
senting content words (contextualized using word-meaning-in-context
techniques along the lines of those presented in Section 2.3) provide
evidence exploited by inferential processes involving the sentences con-
taining them, but no distributional representation of constituents above
the word level is constructed. Grammatical words are seen as logical
operators and they are not provided with a distributional representa-
tion, neither as part of phrases –since phrases are not distributionally
represented– nor by themselves. Garrette and colleagues use, for ex-
ample, distributional vectors to compute the contextualized similarity
between sweeping in “A stadium craze is sweeping the country” and
covering in “A craze is covering the nation”, and feed the resulting
similarity score, together with Discourse Representation Theory repre-
sentations of the sentences, to their probabilistic logical inference sys-
tem, that uses these various sources of evidence to decide if there is
entailment.

While the approach of Garrette et al. (2013) is extremely interesting,
we find the restriction of distributional semantics to the representation
of content words too limiting. First, if we assume a distributional repre-
sentation for single words, it is strange that combinations of such words
would have just a completely di↵erent logical-form representation. It
would mean, for example, that it is meaningful to measure the degree
of similarity between, say, showering and bathing (two content words,
both with distributional representations enabling the similarity com-
parison), but not between showering and taking a shower (a content
word, with distributional representation, and a phrase, not represented
distributionally).

Indeed, the standard analysis of idioms as “phrases that behave as
words”, in the sense that they are stored in the lexicon with their com-
positionally unpredictable meaning, comes very natural if we assign
distributional representations to phrases: An idiomatic phrase such as
red herring is stored in the lexicon with a special vector that is di↵er-
ent from the one that can be obtained compositionally. On the other
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hand, if phrases do not normally have distributional representations,
the birth of an idiom would correspond to a big shift in the repre-
sentation of the corresponding phrase, from logical form to vectorial
representation. This “catastrophic” view of idiom formation does not
sit well with the common observation that idiom formation is a gradual
process, with di↵erent kinds of multiword expressions spread on a cline
of idiosyncrasy: Compare the perfectly transparent kick the ball to the
semi-opaque kick the habit to the completely idiomatic kick the bucket
(see, e.g., Sag et al. 2002, and references there). While the details re-
main to be worked out, a view in which words and phrases have the
same kind of semantic representation promises to handle the lexicaliza-
tion cline of semantically opaque phrases better than a view in which
words and phrases are very di↵erent objects, semantically speaking.

Garrette and colleagues limit distributional representations not only
to single words, but to single content words. This is also problematic,
given the fuzziness of the boundary between content and grammatical
words. Everybody agrees that car is content and the is grammatical.
But how about several and various? Syntactic tests suggest that several
is a determiner (*the several friends) –and hence a grammatical word–
and various an adjective (the various friends) –and hence a content
word. However, the meaning of the two terms does not look dramat-
ically di↵erent and, again, it seems artificial to assume that several
is (only) a logical operator, while various comes with a distributional
vector.

Or think of adverbs. It seems reasonable to consider very a grammat-
ical word, perhaps to be formalized as an intensifying logical operator.
However, take a -ly adverb such as massively. Intuitively, we want to
assign similar analyses to a very dirty look and a massively dirty look,
so -ly adverbs should also be treated as logical operators. But then,
should we provide a (manually crafted?) interpretation for the poten-
tially infinite set of -ly adverbs seen as logical operators? Alternatively,
if their semantics is to be derived from the corresponding adjectives
(that are certainly content words with distributional representations),
how does the process of taking a vector and returning a logical operator
work?

Another argument to treat content and grammatical words in the
same way comes from the fact that often the meaning of a single content
word is synonymous of a phrase containing one or more grammatical
terms: e.g., bachelor can be paraphrased with man and not married.
Note that we are not making the controversial claim that not is part of
the semantic representation of bachelor (Fodor et al. 1980), but simply
observing that it is meaningful to compare a content word (bachelor) to
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a phrase containing grammatical words (not married), which is prob-
lematic if grammatical words are just logical operators working above
the lexical level.

Finally, consider the historical process of grammaticalization (Hop-
per and Traugott 1990), whereby the same word starts its life as a full
content word and progresses to become a grammatical element: Again,
such gradual progression is hard to account for if content and gram-
matical terms have completely di↵erent semantic representations. Once
more, it is simpler to assume that all words have (also) distributional
representations.67

We have an argument, then, for the view that all words, includ-
ing grammatical elements, have (also) distributional representations. In
Section 3, we have argued at length that the right way to handle (most)
grammatical words in distributional terms is as distributional compo-
sition functions. Putting the two conclusions together, if grammatical
words have distributional representations, they are distributional com-
position functions, which in turn implies distributional representations
for the phrases they construct.68

We conclude from the previous arguments that the position of Gar-
rette et al. (2013) that only single (content) words, and not phrases
of any complexity, have distributional representations is not tenable.
Another very interesting recent contribution that promotes distribu-
tional semantics while rejecting composed vectors is that of Turney
(2012). Although it is not directly relevant to compositionality, to fully

67The same fuzzy-boundary arguments can be used to argue that, if there are
reasons to represent grammatical elements in a logical formalism, then content
words should also have a logical-form representation. We have no qualms about
this conclusion. More specifically, we find it appealing to conjecture that the logical
representations of content words are radically underspecified, with details about the
conceptual knowledge they convey encoded in their distributional vectors.

68In the approach sketched in Section 3 above, there is a clear-cut distinction be-
tween words that act as arguments (vectors) and functions (matrices or higher-order
tensors). This is a di↵erent cuto↵ from the one between content and grammatical
words. For example, adjectives and verbs are content words that act as functions,
and pronouns, being DPs, are grammatical words that should be treated as argu-
ments. Just as in formal semantics, it might be di�cult for specific combinations to
decide which element acts as the functor and which as the argument (with type shift-
ing operations possibly allowing both analyses for the same word), but the resulting
competing theoretical proposals will still have a clear separation between functions
and arguments, there is no “argument-function continuum”. More importantly, all
linguistic objects, whether functions or arguments, are represented by distributional
tensors, so that there is not a big ontological leap from one type to the other. For
example, a change-of-category rule, e.g., the one associated to a nominalizing su�x
such as -ness, is easily modeled as a function from matrices (adjectives) to vectors
(nouns).
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understand Turney’s account of the latter we must first introduce his
domain and function spaces.69 Turney represents the meaning of each
word in two distributional semantic spaces, whose dimensions are pop-
ulated with di↵erent kinds of co-occurrence counts. The dimensions of
the domain space are meant to capture domain similarity: Carpenter
is domain-similar to wood because both concepts belong to the domain
of carpentry. The dimensions of the function space capture function
similarity: Carpenter is functionally similar to mason because the two
roles have the same function within di↵erent domains. Consequently,
for each word pair we can compute two separate similarity scores.

Turney’s proposal regarding phrases and sentences is that, instead of
composing vectors representing these larger constituents and then mea-
suring their similarity, we should first compute similarities between the
words in the phrase (or in the sentence), and then compose the similari-
ties to derive a single similarity score comparing the larger constituents.
For example, to measure the similarity of dog house to kennel, Turney
first computes the domain similarity of dog to kennel, and both the
domain and function similarities of house and kennel. Then, Turney
uses the geometric average of the resulting scores as his estimate of the
similarity between the phrases. Di↵erent similarity composition func-
tions are employed for phrases or sentences with di↵erent syntactic
structures. For example, to compare dog house to shelter for cats, we
would use a function that takes into account the fact that in this case
we want to measure, among other things, both the function similarity
between dog and cats and the one of house with shelter. Clearly, there
is an explosion of possible similarity composition functions (we need to
define, at least, a distinct function for each pairing of possible syntactic
structures). Turney speculates that automated methods could be used
to discover the right function for a certain pair of sentences or phrases
(or, more generally, for a pair of syntactic structures, we suppose).

Turney’s method is competitive against Mitchell and Lapata’s addi-
tive and multiplicative models on the tasks of picking the right para-
phrase for a composite nominal expression (e.g., kennel as the right
paraphrase of dog house) and predicting similarity judgments about
pairs of noun, verb and adjective-noun phrases. Turney’s approach dra-
matically outperforms the Mitchell and Lapata models if the tasks are
run on modified versions of the evaluation sets that take word order into
account: Addition and multiplication will assign the same similarity to
the pairs dog house–kennel and house dog–kennel, which is obviously

69Turney’s study also connects compositionality and relation analogy modeling.
We do not discuss this aspect of his work here.
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wrong. In Turney’s approach, on the other hand, similarity is sensitive
to order (in one case, the overall similarity is a function of the domain
similarity of dog–kennel and of both domain and function similarities
of house–kennel ; in the other, of the domain similarity of house–kennel
and of domain and function similarity of dog–kennel).

The “dual space” idea is certainly worth exploring, and we also find
the proposal of composing similarity scores very appealing. However,
we do not see why the input to similarity composition should be limited
to single word comparisons. Besides the huge number of similarity func-
tions that need to be defined, this misses obvious generalizations. For
example, di↵erent similarity functions are required to compare “dogs
sleep in kennels” with “dogs sleep in woody kennels” vs. “dogs sleep in
kennels made of wood”, and yet another set of functions are required if
the first sentence is replaced by “domestic dogs sleep in kennels”. In an
approach in which phrases have also distributional representations, we
could instead define a single similarity composition function accounting
for the previous sentences and many other structures by comparing, in
each case, the subject noun phrase, verb and prepositional phrase vec-
tors (and/or directly verb phrase vectors, that include the prepositional
phases).

Turney conjectures that grammatical words could be either treated
just like content words, and incorporated in the similarity calculations,
or used as cues to guide the derivation of the right similarity composi-
tion functions. Regarding the first option, just as with the ML vector
mixture approaches discussed in Section 3.1 above, it is not clear that
vectors extracted from all contexts in which words such as a or in oc-
cur will carry any distinctive information. Moreover, we do not see, in
most cases, how they would enter the similarity computations: When
comparing the dog sleeps in a kennel to dogs sleep in kennels, which
element of the second sentence should a be compared against? If we
construct phrasal vectors, we can instead incorporate the contribution
of the determiner in the computation of the similarity between the
prepositional phrases in a kennel and in kennels.

But the second route (grammatical words guiding the construction
of similarity composition functions) is even less appealing, since the
contribution of grammatical words to meaning is reduced to signaling
which content words are compared to which, and in which of the two
spaces, and this is a very limited contribution. A reasonable role for
with in the pairwise comparison N1 with N2–N3 N4 (e.g., mansion with
windows–terrace house) would be to tell us that we must compare,
domain- and function-wise, N1 to N4 and N2 to N3. However, when
comparing N1 without N2 to N3 N4, all we can say about without is
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that it leads to exactly the same comparisons as with, which makes
the two prepositions identical! Again, an approach in which with and
without act as distinct distributional functions used to construct the
distributional representations of di↵erent prepositional phrases is more
appealing.

Turney also presents and extends an argument originally put forth
by Erk and Padó (2008) against using vectors of the same size to rep-
resent sentences of all possible lengths. While the following is not quite
the same argument that Turney presents (that is somewhat more tech-
nical and based on information-theoretic considerations), we think it
captures its main point. In abstract mathematical terms, each compo-
nent of a vector can contain an infinite number of real numerical values,
and hence there is an infinite number of distinct vectors. However, when
vectors are encoded on a psychical device such as a computer or a brain,
the range of possible values that can be distinguished in a single com-
ponent is finite, which makes the number of possible distinct vectors
also finite. But a finite set of vectors cannot represent the meaning of
the infinite number of possible sentences in a language.

In replying to this argument, we contend, first, that, just as vec-
tors are infinite in theory, so sentence meanings are infinite in theory.
No single brain (or computer) will ever be capable or need to encode
anything but a small finite subset of this infinity of possible meanings.
Indeed, humans have problems keeping distinct, in their heads, the
meanings of very long sentences that di↵er in just a few words. Second
and more importantly, the argument is based on the unwarranted in-
ference from the premise that sentences have vector representations to
the conclusion that sentence meaning is represented by these vectors
and these vectors only. We (and, we suspect, most proponents of com-
positional DSMs) agree with the premise, but strongly disagree with
the conclusion. If we build the sentence vector compositionally from
distributional representations of its parts, we do not see why these in-
termediate representations should be thrown away once the top node
is reached. We find it more natural to assume that any semantic oper-
ation that refers to the distributional meaning of a sentence can access
the vector representing the whole sentence as well as the vectors (or
tensors) representing all its sub-constituents, down to the word level.
And, going beyond distributional meaning, we do not dispute either
that sentences will also have one, or indeed many, logical-form repre-
sentations (a point we shall shortly return to in the conclusion). Thus,
we are interested in arguments against distributional representations
of sentences (and long phrases) that show that such vectors are not
necessary ; we do not need to be persuaded of the fact that they are not
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su�cient.
We conclude this section by observing that, while we hope to have

argued convincingly for the extension of distributional representations
beyond single content words, we do not know whether every word,
phrase and sentence should have a distributional representation. There
might be good reasons to represent determiner and verb phrases dis-
tributionally (e.g., to insure that phrases such as dog house and kennel
or taking a shower and bathing are directly comparable), but the mo-
tivations to assign distributional representations to larger expressions
are not so clear (for example, when discussing Turney’s “composition
of similarity scores” idea above, we suggested to replace the compari-
son of single words with the comparison of phrases, rather than whole
sentences). It’s far from clear where the line between the constituents
that need distributional representations and those that don’t should be
drawn. Ideally, we will want to strike an acceptable balance between
what DSM representations “do for you”, and what they cost (in time
spent creating and applying them). Perhaps the distributional repre-
sentation for some or even most sentences will be something vague,
perhaps just a hint that the sentence sounds “formal”, “threatening”,
“odd”, “funny” or “positive”. Knowing this much would be useless for
drawing inferences, but it would be valuable information if the task is to
decide whether the sentence can be embedded under complained that,
boasted that or joked that. So, for some purposes, there could be rea-
son enough to keep around even vague DSM representations for higher
constituents, for others there might not. For the time being, we assume
that all linguistic constituents up to sentence nodes have a distribu-
tional representation, and leave it to future work to look for principled
ways to determine the upper syntactic bound on distributional repre-
sentations, possibly on a task-dependent basis.

5.2 The usefulness of vector representations of constituents
above the word

The arguments we presented in the previous section in favour of distri-
butional representations for larger constituents are negative in nature:
If you accept that content words are associated to distributional vec-
tors (and there is ample lexical-semantic evidence for the usefulness of
the distributional representation of content words), then it’s di�cult to
deny distributional representations to function words and larger con-
stituents. However, once we have such representations, what can we
do with them? How can distributional representations of phrases and
sentences aid and/or complement the classic truth-functional represen-
tation of utterances?
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Note that this is a more specific question with respect to the more
general issue of whether distributional semantics can help (composi-
tional) formal semantics, a topic we briefly addressed in Section 2.6.
For example, in formal semantics it is typically (tacitly) assumed that
word meanings are disambiguated before composition applies. Contex-
tually disambiguated vectors (see discussion and references in Section
2.3 above) can help solve the mystery of how such disambiguation takes
place. This is a way in which distributional semantics can help compo-
sitional semantics, but it does not require distributional representations
above words and perhaps simple phrases.70 Similarly, in Section 2.6 we
(very tentatively) hypothesized that the distributional representation
of a sentence might help to pick up the right reference for the sentence
in the outside world. This would be of great help to compositional se-
mantics, but we suspect that the level of words or simple phrases is
better suited to perform the matching with real-world percepts than
full sentences. The anchoring of sentence “a black dog is barking” to the
outside world might proceed by matching a (multimodally-enhanced)
black dog vector to vectors representing objects in the current scene, in
order to scan for candidate black dogs, and a (multimodally-enhanced)
barking vector to current auditory events, in order to scan for candidate
barkings, rather than by matching a single holistic vectorial represen-
tation of the sentence to a holistic vector representing all the current
percepts together.

We focus here on the usefulness of compositional distributional se-
mantics, and not on the just discussed potential contributions of word-
level distributional models to compositional semantics. We want, more-
over, to look at uses of phrasal and sentential vectors that should be
of direct interest to purveyors of semantic theory, rather than aimed
at engineering applications, although e↵ective distributional represen-
tations of sentences are of considerable practical interest. In particular,
such representations can be employed to measure sentence similarity
in order to detect paraphrases (informally, paraphrases are sentences
that mean approximately the same thing: we will get back to them
shortly). Paraphrase detection, in turn, is useful for information re-
trieval tasks such as finding semantically equivalent ways to query a
data-base or the Web, or avoiding search results that overlap with the

70Note, however, that, as we conjectured in Section 2.3, a compositional DSM
might largely sidestep issues of polysemy and disambiguation by implicitly disam-
biguating terms as part of the composition process. The (relative) success of the
intransitive and transitive sentence experiments reported in Section 4.2 above, where
handling verb ambiguity plays a crucial role in getting the right similarity scores,
suggests that this is an empirically viable approach to polysemy.
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query in lexical terms but have very di↵erent meanings. Another nat-
ural application for paraphrase detection71 pertains to the evaluation
of machine translation systems, where we must check if the translation
provided by a system is just a rephrasing or it is significantly di↵erent
from a benchmark manual translation. Other practical tasks helped by
paraphrase detection include text summarization, question answering
and shallow forms of text understanding, such as recognizing whether
a short text entails a certain conclusion (Dagan et al. 2009). Another
application domain where compositional distributional semantics has
already proved its worth is in predicting degrees of positive or negative
evaluation expressed by sentences, where it is important to look not
just at single words, but also at how they are combined: Very bad is
a more negative assessment than bad, but very good is more positive
than good (Socher et al. 2012).

Assessing sentence similarity

After the previous brief excursus on applications, which we included
for the benefit of potential industrial funders, let us turn to more the-
oretical concerns. Just as with words, the main function of sentential
(or phrasal) vectors is to measure the degree of semantic similarity be-
tween sentences (or phrases). This is probably not of immediate help
to determine the truth conditions of sentences. To know that “a dog is
barking” is very similar to “one canine creature arfs” won’t (directly)
help you establish under which conditions the first utterance is true.
However, there are other important aspects of meaning that similarity
might be better suited to handle than truth conditions.

First and most obviously, humans do have strong and reasonably
consistent intuitions about phrase and (simple) sentence similarities (as
shown, for example, by the relatively high inter-subject sentence sim-
ilarity correlations in the benchmark of Grefenstette and Sadrzadeh
2011a discussed in Section 4.2 above). The notion of a paraphrase,
in particular, seems psychological robust, and di�cult to capture in
truth-functional terms.72 The “one canine creature arfs” sentence
above strikes us as a rather close paraphrase of “a dog is barking”,
but it’s hard to characterize this intuition in terms of truth condi-
tions. The sentences are not tautologies (the canine creature could be

71Suggested to us by Stephen Clark.
72Note that paraphrasing is not just a metalinguistic ability, but it’s likely to

play a role in many unconscious everyday linguistic tasks, such as deciding the best
way to communicate a thought or quickly determining whether a piece of news
brings new information. More speculatively, paraphrasing could be used as a fast
surface-y way to reformulate a statement in a form that is better suited for deeper
logico-semantic analysis.
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a coyote, arfing is not quite barking), and to simply claim that they
are not contradictory is too weak a condition for paraphrase status. It
might be possible to capture paraphrasing in terms of possible worlds
(something along the lines of a requirement that paraphrases must
share truth values in a certain proportion of worlds of a certain kind),
but this seems a rather torturous way to account for something that
can be modeled very straightforwardly by compositional distributional
semantics, as already shown empirically by the studies we reviewed
in Section 4.2. Moreover, the very notion of “close paraphrasing” (as
used, for example, by lawyers to assess plagiarism claims) suggests
that being a paraphrase is not an all-or-nothing property: There ex-
ist closer (“a dog is barking”–“one canine creature arfs”) and more
distant paraphrases (“a dog is barking”–“a small mammal is making
sounds”). This gradient property follows naturally from the view that
paraphrases are neighboring sentences in distributional space, but it is
di�cult to capture in a logical formalism.

Semantic anomaly detection

Semantic anomaly is another important aspect of meaning that, we
believe, can be captured more appropriately using distributional rep-
resentations of sentences.73 Chomsky’s (1957) famous “colorless green
ideas sleep furiously” example demonstrates how a sentence can be
at the same time perfectly grammatical and completely nonsensical.
Chomsky used the sentence as part of an argument against statistical
models of language (that would fail to distinguish between this unat-
tested but syntactically well-formed sentence and equally unattested
but grammatically ill-formed ones).74 However, ironically, the kind of
purely semantic ill-formedness illustrated by this sentence resists an
account in terms of the formal models of meaning developed within
the paradigm of generative grammar. The natural way to tackle se-
mantic ill-formedness with the classic apparatus of formal semantics is
by adopting a very rich and granular inventory of semantic types (see
Asher 2011, for a very interesting recent proposal in this direction).
However, to capture violations such as that ideas cannot be green or
that sleeping cannot be performed in a furious manner, one would need
a very rich ontology made of thousands of types, and it is not clear
how such ontology could be learned from data (recall that the logical

73A system able to predict degrees of semantic anomaly will be able to perform
many linguistically and practically important tasks, such as checking if an argument
satisfies the selectional preference of the verb it depends from.

74See Pereira (2000) for an interesting discussion of how modern statistical models
can address Chomsky’s challenge.
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approach, unlike distributional semantics, lacks practical algorithms
for large-scale induction of semantic knowledge from naturally occur-
ring data). But even with a rich type ontology, the extended theory
of semantic types might not be the right instrument to characterize
semantic anomaly. First, anomaly is highly context-dependent (green
ideas sound good in “green ideas are dominating the global warming
debate”), and accounting for context-dependency will make the theory
of types even more complex. Second, semantic ill-formedness judgments
are not sharp like syntactic ones, but are rather spread on a cline of
acceptability from the completely natural (“dogs bark”) to the utterly
nonsensical (the Chomsky sentence) via various degrees of semantic
plausibility: “?cats bark”, “??closets bark”, “???preferences bark”.

Collecting large amounts of lexico-semantic knowledge from data,
handling context dependency and modeling graded judgments are, how-
ever, core properties of the distributional approach to meaning. And
this is clearly a job for compositional distributional semantics: We can-
not see how you could measure the semantic plausibility of a sentence or
a phrase using just the distributional representations of the component
words, without combining them. In Vecchi et al. (2011) (briefly reviewed
in Section 4.3 above), we implemented and tested simple methods to
measure the degree of semantic acceptability of phrases using composi-
tional DSMs. Extending ideas from that work to sentences, we hypoth-
esize that properties of the semantic space neighborhood inhabited by
a sentence will provide us with information about the plausibility of
the sentence. One simple hypothesis in this direction (with preliminary
support from the work by Vecchi and colleagues) is that semantic ac-
ceptability correlates with the density of a sentence neighborhood. Fig-
ure 4 is a cartoon illustration of this hypothesis. A meaningful sentence
such as “some ideas are dangerous” will have many neighbours, that is,
sentences that state related things. On the other hand, the nonsensical
“green ideas” sentence will be out there in semantic space, without any
(meaningful) sentence stating related facts to keep it company.

An approximation to this approach would involve constructing a
large set of (meaningful) sentence vectors (e.g., taking relatively fre-
quent sentences from a corpus), and measuring how populated the area
surrounding an arbitrary point (corresponding to a compositionally-
derived sentence) is, or what are the closest neighbours of a given
point. Yet, if we want to follow this idea to its full consequences we
will need a di↵erent, more ambitious and more interesting method,
which at present we can just sketch.

The compositional DSM enterprise, if fully successful, would allow
us to build a meaningful vector for any meaningful and syntactically
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colorless green ideas sleep furiously

great ideas will last

driving was a bad idea

some ideas are dangerous

sleep on this idea

hopes die last

FIGURE 4: Nonsensical sentences might be isolated in semantic space.

correct sentence. The motivation for doing this compositionally is by
now very familiar: the space of possible sentences is infinite. Suppose,
now, that we want to reverse our task: Given a vector s produced by
the distributional composition of a sentence, we want to ask which are
the sentences that, if fed through the same process, would produce
the vectors closest to s. In the best of possible worlds, if s has been
created from S (let’s say that s is a ‘distributional composition’ of S,
s =CO(S)), the “noisy” inverse function GEN75 applied to s should
give back a set containing the closest paraphrases of S within certain
bounds of length, complexity, etc. (including S itself). The distance of
the generated phrases to S would then be measured by applying CO to
them to obtain the corresponding vectors, and measuring the cosines
of the latter to s. In particular, it should be the case that cos(CO(S),
b) ⇡ 1.

An empirically e↵ective formulation of GEN would have great prac-
tical importance, since without it we can only ask whether two candi-
date phrases are similar, but we have no way to generate similar cases,

75The name “GEN” should remind familiar readers of the formally similar prob-
lem of candidate generation in Optimality Theory (OT, Prince and Smolensky
2004). In OT, a set of ordered violable constraints can decide which of a set of
candidates ‘wins’, i.e., satisfies the most important constraints. OT has no indepen-
dent way of generating the candidates to be evaluated, and this task is left to an
unspecified function also named GEN.
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which is a fundamental step of the approach to semantic anomaly we
just sketched and for some of the linguistic applications discussed be-
low. We must however leave the construction of (approximations to)
GEN to further work.

Alternative classes

There are several phenomena in formal semantics where the truth of
a statement can be established only on the basis of a set of alter-
natives. The best-known case is probably Mats Rooth’s (1985; 1995)
seminal analysis of association with focus. Consider (18), where upper-
cased represents sentential stress and square brackets the focused con-
stituent.76

(18) The candidate only [shared a CAB]F with the mafia boss.

For this sentence to be true, the candidate must have, of course,
shared a cab with the mafia boss, and, to capture the semantics of
only, he must have not done any of a set of alternative possible things
he could have done with the mafia boss.

The problem is what the set of ‘alternative possible things’ amounts
to. Obviously, (18)cannot be saying that the candidate could not have,
say, shared a restaurant with a boss, or seen the mafia boss on TV.
Intuitively, we understand the sentence as claiming that the most com-
promising relation the candidate had with the mafia boss was sharing a
cab, which is maybe not particularly compromising. (18)thus excludes
relations like ‘being friend’ or ‘going on vacation’ with him, ‘paying him
regular visits’ and the like.

Unfortunately, formal semantics has very little to say on what the
alternative set actually contains: Its content is assumed to be depen-
dent on context, and is typically left to an underspecified ‘pragmatic
module’. However, without knowing the actual content of the alterna-
tive set, and indeed without having a measure of the extent to which
an assertion counts as a valid alternative to the focused constituent, we
have no way to explain why the replies in (19)[a-e] sound progressively
less convincing as rejections of (18).

(19) a. That’s false: he also worked for the mafia boss!

b. That’s false: he also shared a house with the mafia boss!

c. That’s false: he also ate in the same pizzeria as the mafia
boss!

d. That’s false: he also ate at the same time as the mafia boss!
76Due to the mechanism of focus percolation, the area a↵ected by focus is typically

larger than the stressed (sub)constituent.
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e. That’s false: he also lived in the same country as the mafia
boss!

The problem is pervasive since alternative sets are part and parcel of
many semantic operations. They appear with what is sometimes called
metalinguistic negation (20); in generic sentences (21); with scalar op-
erators like even 21c, etc.

(20) John didn’t just [play a PRACtical joke]F on his colleague! He
positively TERRified her!

(21) a. In San Petersburg, [OFFicers]F always escort ballerinas
(not low-rank military personnel)

b. In San Petersburg, o�cers always escort [balleRInas]F (but
not other artists)

c. John even [SANG]F at the party (not just took part in it)

The problem is always the same: not all possible alternatives count
(for instance if a ballerina is sometimes escorted by her husband, this
doesn’t seem to contradict (20)[a]; but if she was escorted by simple
soldiers, it does.).

We believe that DSMs could actually o↵er a principled way to ad-
dress this problem.77 Very sketchily, the idea is to produce a tensor for
the focused constituent in context, then use this tensor to decide which
constituents would be su�ciently similar, i.e., which one would produce
similar-enough tensors. The acceptability of the cases in 19 would thus
have to be evaluated by computing the tensors for the constituents cor-
responding to the focus element of 18 (“share a cab”) and measuring
the distance from its tensor. In other cases, e.g., to generate the contin-
uation “not low-rank military personnel” in (20)[a], we would need to
use the function GEN to produce examples of actual close alternatives
(excluding, of course, those that are entailed by the focused assertion,
like “o�cers escort ballerinas”).

Note, finally, that while focus on single elements (e.g., John didn’t
actually [KISS]F Mary) could still be handled by word-level DSMs, any
case in which focus spans a VP or a complex nominal would require
the full power of compositional DSMs.

Generic information

We already discussed in Section 2.6 how DSMs, reflecting statistical
trends from large corpora, will capture generic rather than episodic
knowledge. Indeed, modeling the acceptability of generic sentences is

77The relevance of compositional DSMs for the creation of alternative sets was
first pointed out to us by Jacopo Romoli (p.c.).
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another big challenge for a truth-functional view of meaning (Krifka
et al. 1995; Cohen 2004) where distributional semantics might help.
Generic statements about regularities in whole classes of objects, such
as “birds fly”, “mammals do not fly” or “lions have a mane” are found
acceptable despite the presence of (sometimes large and systematic)
exceptions (penguins, bats, lionesses), which makes them di�cult to
handle in straightforward logical quantification terms.

Two aspects of generics suggest that distributional semantics might
have something to contribute to this task. First, sentences such as “li-
ons have a mane” express a facet of our general knowledge about a
concept – in this case, that of a lion (Carlson 2009, draws an explicit
connection between generics and conceptual knowledge). Not surpris-
ingly, DSMs derived from large corpora are good at extracting general
world knowledge about concepts (Almuhareb and Poesio 2005; Baroni
et al. 2010; Kelly et al. 2012), so it is reasonable to expect their com-
positional extension to capture valid statements about properties of
concepts.

Second, acceptability judgments about generic statements are not
sharp. “Lions live in Africa” is perfect, “lions live in Europe” sounds
funny but it is not nearly as bizarre and obviously false as “lions live on
the moon”. Again, it is easier to model this sort of gradience in the ge-
ometric framework of distributional semantics than in truth-functional
terms. In particular, there might be a relation between the way in which
we just proposed to handle semantic acceptability and anomaly in gen-
eral and the case of generics in particular. Not by chance, Chomsky’s
“green ideas” and almost all the examples we discussed above when
speaking of semantic anomaly are in the form of generic sentences with
bare plural subjects. And, again, density and other properties of the
neighborhood of a generic statement might turn out to predict its de-
gree of acceptability.78

6 A cursory look at some further relevant work

The last years have seen an enormous increase in the amount of pub-
lished work on how distributional meanings can be composed; we re-
fer to Clark (2013b), Erk (2012) and Mitchell and Lapata (2010) for

78A proper characterization of generics must take into account not only conceptual
mismatches and world knowledge, such as the incompatibility of the class denoted
by the subject with the property denoted by the predicate (lions are not the sort
of things that live on the moon), but also grammatical aspects, such as the way in
which the subject is overtly quantified: “lions live in Africa” sounds “true”, but “all
lions live in Africa” isn’t; “lions live in Europe” sounds “false”, but it is certainly
the case that “some lions live in Europe”.



Frege in Space / 325

overviews. In previous sections, we have already discussed in depth
some of the closest related work (see in particular Section 3.1 for a
discussion of Mitchell and Lapata 2008, and Section 5.1 for our view of
Garrette et al. 2013 and Turney 2012). Here, we limit our discussion to
work that share our goal and that uses approaches either very close or
radically di↵erent from ours.

Before going into the details of this work, it is worth mentioning
that there is a rich tradition of corpus-based statistical semantics meth-
ods producing compositional representations that are di↵erent from the
classic logic-based ones, but are not distributional in our sense. This
line of research includes the corpus-based induction of semantic parsers
suitable for question answering (Liang et al. 2011), role labeling (Titov
and Klementiev 2012) and modeling semantic and syntactic acquisition
(Kwiatkowski et al. 2012). The output of such semantic parsers could
be tried as an alternative to the purely syntactic CG input used in our
current work.

Recently, there also has been much interest in higher-order tensors
for distributional semantics (e.g., Baroni and Lenci 2010; Giesbrecht
2010; Turney 2007; Van de Cruys 2010; Widdows 2008). However, even
when this line of work tackles the issue of compositionality, it looks at
tensors as a way to represent larger structures that result from compo-
sition, rather than taking the view we propose here of using tensors to
encode composition functions.

Our view on the syntax-semantics relations traces back to the tra-
ditional type-logical approach introduced by van Benthem in 1986, fol-
lowing which we have exploited the Curry-Howard correspondence be-
tween logical rules and lambda-calculus rules to obtain a proof term
for a parsed structure. The proof-term gives the backbone to be filled
in with the interpretation of the linguistic signs composed. In our case,
we have a clear-cut division of the workload. The grammar and the
Curry-Howard correspondence with the lambda-calculus take care of
building the proper structure by taking into account the expressivity
issues, over-generation and under-generation problems as well as the
scope possibilities that sentences with logical operators may display,
and the distributional model accounts for lexical meaning and meaning
composition.

Clarke (2011) studies the algebraic properties a vector space used for
representing natural language meaning needs to have; the author claims
the composition operation has to be bilinear (components of meaning
persist or diminish but do not spontaneously appear; e.g., both red and
herring must contain some components relating to the meaning of red
herring which only come into play when these two words are combined
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in this particular order), associative and distributive. By taking this
abstract view, Clarke manages to define a general framework that cov-
ers under its umbrella our approach together with, for instance, the one
of Mitchell and Lapata (2008), discussed in Section 3.1, and Clark et al.
(2008), which we discuss below. Moreover, the author identifies possi-
ble ways to account for degree of entailment between distributional
representations, proposing to exploit the partial order of the defined
algebraic structure.

Besides the general abstract framework, Clark et al. (2008) (and
the extended version in Coecke et al. 2010) share also our view of
the syntax-semantics interface of natural language and of its formal
models. Similarly to us, they capture compositionality by exploiting a
morphism between the syntactic and semantic building systems. Dif-
ferently from us, they define a morphism directly between a grammar
(a pre-group) and a vector space model without going through the in-
termediate step of the lambda-calculus. The choice of the pre-group is
due to the authors interest in the category-theoretic perspective under
which pre-groups share a common structure with vector spaces and
tensor products. A di↵erent view is taken in Clark (2013a) where the
author discusses the framework in terms of multi-linear algebra provid-
ing a more concrete and intuitive view for those readers not familiar
with category theory. At the level of lexical and phrasal interpreta-
tion, Clark et al. (2008), Coecke et al. (2010) and Clark (2013a) import
Frege’s distinction into DSMs by representing “complete” and “incom-
plete” expressions as vectors and as higher-order tensors, respectively,
and consider the syntax-semantics link established between syntactic
categories and semantic types. For instance, a transitive verb has syn-
tactic category DP r · S ·DP l (that corresponds to the functional CG
category (DP\S)/DP ) and semantic type N ⌦ S ⌦ N , since expres-
sions in DP and S are taken to live in the semantic space of type N
and S, respectively, and the transitive verb relates these vector spaces
via the tensor product (⌦): its dimensions are combinations of those
of the vectors it relates. As explained in Clark (2013a), the verb vector
can be thought of as encoding all the ways in which the verb could
interact with a subject and object in order to produce a sentence, and
the composition (via inner product) with a particular subject and ob-
ject reduces those possibilities to a single vector in the sentence space.
Di↵erent implementations of this framework have been proposed by,
e.g., Grefenstette and Sadrzadeh (2011a), Grefenstette and Sadrzadeh
(2011b), Coecke et al. (2013), Kartsaklis et al. (2013). The one closest
to us is the one by Grefenstette et al. (2013), where the authors further
develop the framework discussed above. In particular, they exploit a
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tensor contraction operation that guarantees an equivalence between
tensor order and semantic type. Tensor contraction is closely related to
our generalized matrix-by-vector product and indeed, the framework of
Grefenstette and his colleagues can be seen as an abstract formaliza-
tion of the one we are proposing here. Grefenstette and his colleagues
(that, not by chance, include one of the authors of the current paper)
also bring together the Coecke et al. formalism with ours by adopting
the regression-based learning method we explained in this article (the
empirical results of Grefenstette et al. 2013, are reviewed in Section 4.2
above).

We share the idea of learning composition functions by regression
on corpus-extracted examples of their inputs and outputs with Guevara
(2010), who, however, treats all linguistic expressions as vectors without
distinguishing them into atomic and functional types. The importance
of exploiting input and output training data for building compositional
distributional semantic models is also stressed by Zanzotto et al. (2010),
who present a model similar to the one of Guevara, but cleverly exploit
dictionary definitions to extract both positive and negative training
examples.

Another model that is closely related to ours is that of Socher et al.
(2012), who also implement function application in terms of operations
on matrices and vectors. However, di↵erently from us, they treat each
word equally, as both a vector and a matrix. Distributional composition
is doubled – each word matrix is composed with the lexical vector of
the other word in a phrase – and the result is still a pair of a vector and
a matrix. Since Socher et al. (2012) do not use tensors higher than ma-
trices, all composition is pairwise, whereas we have presented a model
of composition permitting functions of larger arity. Finally, Socher and
colleagues estimate the weights of their models by direct optimization
of a specific semantic task, thus requiring hand-labeled examples of the
intended output of the task, and producing di↵erent representations
of the same linguistic expressions depending on the intended task. Di-
rect empirical comparison of our approach to the one of Socher and
colleagues is an important item in our future work agenda.

Rather di↵erent and quite interesting points of view are assumed
in Garrette et al. (2013) (already discussed in Section 5.1) and Copes-
take and Herbelot (2012). Garrette et al. (2013) adopt a formal se-
mantics framework to build First Order Logic (FoL) representations of
sentences, lexical distributional semantic representation for computing
word similarities and weighting FoL clauses, and Markov Logic Net-
works for reasoning on such clauses. Hence, they exploit the FoL logical
operators, like negation, existential and universal quantifiers, to draw
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inferences involving their relations, and DSM representations to draw
inferences involving lexical information.

The integration of logical and distributional models is studied
in Copestake and Herbelot (2012). Here too, the authors distinguish
the interpretation of closed and open class words by adopting a view
closer to the logical one for the former and the distributional one for
the latter, but they propose more drastic changes and an integration
of the two models. On the one hand, they import in the logical model
the idea that the meaning of a content word is given by the contexts
in which it occurs, hence they replace the denotational sets of enti-
ties with distributional sets of contexts. On the other, they take the
contexts to be logical rather than linguistic ones, namely the semantic
space components are not words, but their logical representation. For
instance, jiggle would be said to co-occur with the logical representa-
tion table’(x) if the corpus, from which co-occurrence information is
extracted, contains the sentence “the ball on the table jiggled”. As in
standard distributional semantics, here too there are di↵erent possi-
bilities for choosing the logical context to be considered. For instance,
logical contexts can be those predicated of the same entities of the tar-
get word, or those related by paths of a certain length to it, reaching
sets of logical contexts corresponding to a very fine-grained notation
of semantic features. Finally, each distributional set records also the
connection of the formal logic representation of the sentence to the
situation in which the sentence was uttered, as well as the entities that
are arguments of the logical forms in it. This rich information allows to
preserve the idea of extension as well as to distinguish words’ intensions
(sets of logical forms) even when their extension is the same.

7 Open issues and conclusions

In closing this paper, we want to touch on some of the open issues we
see along the road to a full-sized DSM semantics, and return to the
general system architecture.

One of the great advantages of DSMs is that they hold the promise to
handle polysemy gracefully. We do not need to have a separate entry for
brown in each of the brown N phrases cited in the Introduction (“brown
cow”, “brown book”, etc.): The brown matrix will produce a sensible
semantic value for (almost) all the nouns it is applied to. Homonymy,
like the fact that page refers to a piece of paper or a person, is a di↵erent
matter. The di↵erence between polysemy and homonymy is notoriously
di�cult to draw, but the existence of a distinction seems indisputable.
For instance, most people need some linguistic training to note that
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in co-predication cases like (22)lunch must mean di↵erent things (an
object can be tasty, an event cannot), but any speaker is aware of the
fact that page, bank or bass can each mean very di↵erent things.79 With
true homonyms co-predication is impossible (“*the page was written in
Latin and knew this language”).

(22) Lunch was tasty but lasted forever.

Based as they are on word forms, DSMs tend to overlook homonymy,
resulting in vectors that conflate all the di↵erent senses of a lexical ex-
pression. This is certainly a problem, but one which has been amply
addressed at the lexical level in the computational community (see
McCarthy 2009, and Navigli 2009, for recent surveys, and the discus-
sion in Section 2.3). Word sense disambiguation techniques have lim-
ited success in fine-grained sense distinctions—fortunately, those that a
DSM approach seems to be best at handling—but perform well on true
homonymy, where there is no (synchronic) relation between the various
senses. The output of these algorithms could thus be a semantic tag-
ging of words in context, which distinguishes, say, between pagepaper
and pageperson. Suppose that tokens that cannot be disambiguated with
confidence are left unlabeled, and that each labeled sense receives its
own vector. When a compositional function like the adjectives writ-
ten encounters an unlabeled ambiguous noun like page it could look
up the vector for each of its possible meanings, then apply semantic
anomaly detection, described in Section 5.2, applied to the output of
written(pageperson) and written(pagepaper), to guess which meaning is
probably correct for “written page”. If the ambiguity cannot be resolved
locally it will be carried up the tree until it can be resolved by further
compositions, up to the sentence (and potentially, the discourse) level.
This will require a mechanism for storing multiple disjunctive mean-
ings, but such a system would also be necessary if we want to store both
compositional and idiosyncratic DSM-meaning for a constituent (to be
able to process idioms in their literal and figurative use; see discussion
in Section 3.5). It will make the system more complex, but it should
not pose any special theoretical challenge, except for the general prob-
lem of deciding which words should be treated as homonyms. In the
worst case, we run the risk of incorrectly treating a polysemous word as

79Words can be both polysemous and homonymous: page in the paper sense could
refer to the object or the text in it, in the human sense, to the person or the position
(“he was nominated page”). This suggests that homonymy and at least regular
polysemy should not be seen as opposite values on a single scale. See Copestake
and Briscoe (1995); Boleda et al. (2012a) for discussion of various approaches and
Frisson (2009) and Klepousniotou and Baum (2007) for experimental results on the
psychology of this distinction.



330 / Marco Baroni, Raffaella Bernardi and Roberto Zamparelli

a case of homonymy, creating n possible lexical items with n vectors,
where one should have been su�cient. Note however that in this case
the vectors for the various senses will be quite similar, so even if the
disambiguation system fails to distinguish one sense from the other, the
harm done to the global system should be very limited.

A boundary case of ‘lexical ambiguity’ to which we will need to
devote special attention is that of words with multiple argument struc-
tures. Recall that in our compositional DSMs the number of argument
a word takes determines its shape, and that objects of di↵erent shapes
cannot be directly compared (see Section 3.4). But many nouns can
optionally take arguments: we have mother, but also mother of twins.
Most nouns derived from transitive verbs can take PP arguments that
correspond to the direct object of the verb (“the end (of the paper) is
near”; “the discovery (of America) was surprising”, etc.).80 Thus, it
would appear that the same nouns are sometimes vectors, sometimes
tensors, i.e., functions from the space of their arguments to nominal
vectors.81 The problem is also found with those verbs that have a tran-
sitive and an intransitive version (John ate his lunch/John ate): the
VPs would be comparable (both matrices), the Vs would not. We reach
the counterintuitive conclusion that the end in “the end is near” and
“the end of the paper is near”, or the transitive and intransitive usages
of eating are completely di↵erent and incomparable linguistic objects.

We see two linguistically informed solutions for this problem. First,
we could treat verbs like run or eat as uniformly transitive, training
them on their objects when they have one; when they do not, we could
apply the transitive function to an ‘internal object’, built by averaging
the vectors of the most frequent actual objects of the transitive ver-
sion.82 We surmise that the same approach could be applied to nouns.

80Treating all these cases as PP-adjuncts, i.e., cases where the preposition of
takes the DP and the N to form a modified N, i.e., (N\N)/DP, does not capture the
fact that these are true arguments of the nouns, as they are of the corresponding
verbs. Adjuncts are not selected; they can be attached to any noun, not just to
relational ones. Moreover, arguments and adjuncts can combine, but only in one
order (in “a mother of twins of high social status” only the second of -PP is an
adjunct; “*a mother of high social status of twins” is impossible, at least with a
neutral intonation).

81Following an old but still popular analysis (Stowell 1981), we could simplify
things a bit taking the of that introduces nominal arguments to be a pure case
marker. Semantically, this of would denote the identity function, which simply
returns the vector of its DP argument. Relational nouns would then be matrices
that map vectors in DP-space to vectors in N-space.

82This would attempt to capture the common observation that the understood
object of the intransitive versions has to be somehow prototypical. If John is “eating
the dust”, “running a risk” or “drinking poison”, it is odd to say that he is eating,
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A second approach would be to use corpora to learn a mapping
from the version of a word with an argument to the version without,
or vice-versa. In this case, we would collect vectors for occurrences of
eat or end without complements, vectors for occurrences of the same
words when they have arguments, then use regression to establish a
mapping (a third-order tensor if we map from a matrix to a vector).
This approach might be feasible, but it is too general: nothing would
prevent the function from being applied also to nouns that never take
arguments.

Both routes are worth exploring if we want to handle a di↵erent and
more productive case, that of active/passive alternations (23). In pas-
sives, the external argument of a transitive verb becomes syntactically
optional and can be expressed by a by-phrase.

(23) a. Mary kissed John.

b. John was kissed (by Mary).

The two approaches (providing a null, ‘average’ argument, or learn-
ing a transitive-intransitive mapping) have di↵erent strengths and
weaknesses. The first essentially reduces (23)[b] to “someone kissed
John”, but is computationally straightforward (after training kiss on
active sentences alone one would be able to compose the DSM for a
passive sentence with no additional training). The second (learning
from the corpus a mapping from active to passive verbs or vice-versa)
seems potentially superior at capturing the fact that active and passive
voice might be used in di↵erent contexts—their information structure
is not the same (see, e.g., Lambrecht 1996). Neither methods, however,
could recover the agent within by-phrases; this would probably require
a more structural approach, akin to the tensor transposition we saw for
relative clauses. In principle, cases like the causative alternation (“the
missile sank the ship”/“the ship sank”) or the middle construction
(“the shop sells the book”/“the book sells well”) could be handled in
a similar way, though note that in these cases, unlike in passives, the
necessary DSM-manipulations could not be associated with the pres-
ence of an a�x (this was the spirit of the decompositional morphology
hinted at in Section 3.4).

Operations that take existing forms and generate variations would
be the DSM-equivalent of lexical redundancy rules in transformational
syntax (Chomsky 1970): if a certain linguistic item has been observed
with a certain argument structure, then we can generate a new argu-
ment structure for it according to the functions we have learned. De-

running or drinking.
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spite the potential risk of overgeneration, the opportunity to establish
interesting mappings for a large set of constructions is wide open: For
instance, we could easily imagine a rule, triggered by Subject-Aux inver-
sion, which maps a declarative-sentence vector into a yes/no-question
vector.

As discussed in Section 3.5, a key ingredient for the success of a full-
scale DSM-distributional approach is representational e�ciency. This
means, among other things, having more compact and e�cient meth-
ods for representing and learning tensors, as well as the possibility to
recognize and exploit the similarity of di↵erent linguistic objects in the
learning phase. The latter would be crucial at the lexical and phrasal
level, to learn rare forms. Recognizing, for instance, that indigo names
a color, we could use whatever knowledge we have about other colors
to extrapolate a part of its semantics.

A di↵erent case in which similarity of structures might play a role
is the way we could handle generalized coordination. This extremely
pervasive operation has many properties that set it aside from other
constructions in grammar (see, e.g., Zamparelli 2011, for a review). One
is its promiscuous categorial behavior: and can join any pair of syntactic
categories (in CG, we can define the type of and as ((X\X)/X), X a
variable over categories). Since these categories can themselves be quite
complex (e.g., transitive verbs or VP modifiers, higher-order tensors),
a potential objection to our approach is that conjunction of all but the
most basic cases will be impossible to implement, or train.

We believe that the situation is actually a lot better than it seems.
Even setting aside the discussion at the end of Section 3.5, which sug-
gests that the computational problem could be reduced by a careful
implementation, we could follow the approach in Rooth and Partee
(1983) and propose that conjunction never applies to higher-order ten-
sors. In this influential approach (see also Winter 1996, 2001) the scope
of coordination is not what it appears to be: V-conjunction in (24)[a] is
semantically converted into sentential conjunction (24)[b], an operation
on vectors in our system. Similarly, (25)[a] would become (24)[b], again
vector conjunction.

(24) a. Dogs [chase and pester] cats.

b. [Dogs chase cats and dogs pester cats]

(25) a. A [long and fat] hot dog.

b. A [long hot dog and fat hot dog]

Additional reasons for optimism come from the observation that,
when applied to predicates, conjunction in formal semantics boils down
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to a very simple operation—set intersection.83 The DSM version of co-
ordination could be equally simple; so simple, in fact, that we might
discover that (some variation on) Mitchell and Lapata’s componentwise
vector multiplication might approximate it well enough to make train-
ing superfluous for those coordinated categories that do not involve
tensed elements.84

If coordination became, in fact, an ‘easy’ case, the road would
be open to a decompositional approach to those constructions that
have conjunction as one of their subcomponents (examples are relative
clauses, correlatives, adpositional structures), factoring out conjunc-
tion and dealing with the hopefully straightforward residual part. For
instance, consider a relative clause, as in (26): in formal semantics, the
brackets in this example would denote the intersection between the set
of dogs and the set of cat-chasers.

(26) The [dogs which chase cats] barked.

Now, in many languages, relative clauses can function as full nomi-
nals (“free relatives”, e.g., the constituents marked in (27)).

(27) Whoever came k
new [what Bill feared most].

This suggests an alternative treatment for which with respect to the
one we propose in Section 3, where this word is a function from matrices
(verb plus object or transposed verb plus subject) to N vectors. To deal
with free relatives, the same operation that in “dogs chase cats” applies
to the nouns dogs and cats, turning them into full DPs (see Section 3.6),
would now map the free relatives in (27)onto the DPs needed by knew.
But (26)would involve combining the noun dog with the “pseudo-noun”
“which chase cats” by means of a standard N conjunction (which in this
case would be entirely structure-driven: no and is present between dogs

83By predicates we mean, pretheoretically, any category that can appear after a
copula (adjectives and non-quantificational noun phrases), and modifiers (attribu-
tive adjectives, PPs). The behavior of conjunction with DPs is more complex, and
has prompted some linguists to distinguish between an intersective (Boolean) and
a non-intersective (non-Boolean) conjunction. Again, see Zamparelli (2011) for ref-
erences.

84As Mitchell and Lapata discuss, componentwise vector multiplication produces
a sort of “component intersection” —only those dimensions that are significantly
di↵erent from 0 in both input vectors will be significantly di↵erent from 0 in the out-
put. Tensed cases like “John arrived and Mary left”, or “John took the car and went
to school” imply a temporal sequence of two events, while conjunction of statives do
not: “John likes spaghetti and Mary loves sushi”. We do not see how vector-mixture
models could approximate these cases, and especially their di↵erence: if they are
symmetrical, they might at best get the second, if not, the first.
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and “which chase cats”). The DSM meaning of the relative pronoun
would be quite simpler and the conjunction could be the same as the
one trained for, say, “a friend and colleague”. The same divide et impera
methodology could be applied to other cases, e.g., adverbial modifiers.

When DSMs were first developed for single words, they were tested
on fairly basic lexical tasks, such as simulating word similarity judg-
ments or spotting synonyms. However, in the two decades since these
first experiments, the very same models have been applied to much
more complex and arguably linguistically interesting tasks, such as pre-
dicting the selectional preferences of verbs or the qualia roles of nom-
inal concepts (see Section 2.2). Analogously, we are currently testing
our early compositional DSMs on relatively ‘simple-minded’ tasks such
as paraphrase detection, but we are confident that the imagination of
future researchers will find applications for these models in increasingly
ambitious and linguistically interesting domains of semantics.

This paper is the beginning of a long journey. We hope that you, pa-
tient reader, will forgive us if its ambitious course still rests on empirical
foundations that we and many others are just starting to verify. In the
years to come, we will devote our energies to chart the land and to trim
the paths, many of which undoubtedly lead nowhere. We hope that if
you found the ideas presented here stimulating enough to accompany
us until this last paragraph, you will also join us in the exploration of
this brave new world.
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Erk, Katrin and Sebastian Padó. 2010. Exemplar-based models for word
meaning in context. In Proceedings ACL, pages 92–97. Uppsala, Sweden.

Eslick, Ian. 2006. Searching for Commonsense. Ms thesis, MIT, Cambridge,
MA.

Evert, Stefan. 2005. The Statistics of Word Cooccurrences. Ph.D dissertation,
Stuttgart University.

Fellbaum, Christiane, ed. 1998. WordNet: An Electronic Lexical Database.
Cambridge, MA: MIT Press.

Feng, Yansong and Mirella Lapata. 2010. Visual information in semantic
representation. In Proceedings of HLT-NAACL, pages 91–99. Los Angeles,
CA.

Firth, John R. 1957. Papers in Linguistics, 1934-1951 . Oxford, UK: Oxford
University Press.



Frege in Space / 339

Fletcher, William. 2004. Making the web more useful as a source for linguistic
corpora. In Corpus Linguistics in North America, pages 191–205. Rodopi.

Fletcher, William. 2012. Corpus analysis of the World Wide Web. In
C. Chapelle, ed., Encyclopedia of Applied Linguistics. Hoboken, NJ: Wiley-
Blackwell.

Fodor, Jerry, Merrill Garrett, Edward Walker, and Cornelia Parkes. 1980.
Against definitions. Cognition 8:263–367.

Foltz, Peter, Walter Kintsch, and Thomas Landauer. 1998. The measurement
of textual coherence with Latent Semantic Analysis. Discourse Processes
25:285–307.
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