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ABSTRACT. Children in their early life are faced with the challenge of learning the meanings of
words from noisy and highly ambiguous contexts. The utterances that guide their learning are
emitted in complex scenes where they need to identify which aspects of these scenes are related
to which parts of the perceived utterances. One of the key challenges in computational modeling
of the acquisition of word meanings is to provide rich enough representations of scenes that
contain the similar sources of information and have similar statistical properties as naturally
occurring data. In this paper we propose a novel computational model of cross-situational
word learning that takes images of natural scenes paired with their descriptions as input and
incrementally learns probabilistic associations between words and image features. We examine
our model’s ability to learn word meanings from ambiguous and noisy data through a set of
experiments. Our results show that the model is able to learn meaning representations that
correlate with human similarity judgments of word pairs. Furthermore, we show that given an
image of a natural scene our model is able to name words conceptually related to the image.
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1. Introduction

Children learn most of their vocabulary from hearing words in noisy and ambigu-
ous contexts, where there are often many possible mappings between words and con-
cepts. They attend to the visual environment to establish such mappings, but given that
the visual context is often very rich and dynamic, elaborate cognitive processes are re-
quired for successful word learning from observation. Consider a language learner
hearing the utterance “the gull took my sandwich” while watching a bird stealing
someone’s food. For the word gull, such information suggests potential mappings to
the bird, the person, the action, or any other part of the observed scene. Further expo-
sure to usages of this word and relying on structural cues from the sentence structure
is necessary to narrow down the range of its possible meanings.

1.1. Cross-situational learning

A well-established account of word learning from perceptual context is called
cross-situational learning, a bottom-up strategy in which the learner draws on the pat-
terns of co-occurrence between a word and its referent across situations in order to
reduce the number of possible mappings (Quine, 1960; Carey, 1978; Pinker, 1989).
Various experimental studies have shown that both children and adults use cross-
situational evidence for learning new words (Yu and Smith, 2007; Smith and
Yu, 2008; Vouloumanos, 2008; Vouloumanos and Werker, 2009).

Cognitive word learning models have been extensively used to study how children
learn robust word-meaning associations despite the high rate of noise and ambigu-
ity in the input they receive. Most of the existing models are either simple associa-
tive networks that gradually learn to predict a word form based on a set of seman-
tic features (Li et al., 2004; Regier, 2005), or are rule-based or probabilistic imple-
mentations which use statistical regularities observed in the input to detect associa-
tions between linguistic labels and visual features or concepts (Siskind, 1996; Frank
et al., 2007; Yu, 2008; Fazly et al., 2010). These models all implement different (im-
plicit or explicit) variations of the cross-situational learning mechanism, and demon-
strate its efficiency in learning robust mappings between words and meaning repre-
sentations in presence of noise and perceptual ambiguity.

However, a main obstacle to developing realistic models of child word learning is
lack of resources for reconstructing perceptual context. The input to a usage-based
cognitive model must contain the same information components and statistical prop-
erties as naturally-occurring data children are exposed to. A large collection of tran-
scriptions and video recordings of child-adult interactions has been accumulated over
the years (MacWhinney, 2014), but few of these resources provide adequate seman-
tic annotations that can be automatically used by a computational model. As a re-
sult, the existing models of word learning have relied on artificially generated input
(Siskind, 1996). The meaning of each word is represented as a symbol or a set of se-
mantic features that are selected arbitrarily or from lexical resources such as WordNet
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(Fellbaum, 1998), and the visual context is built by sampling these symbols. Some
models add additional noise to data by randomly adding or removing meaning sym-
bols to/from the perceptual input (Fazly et al., 2010).

Carefully constructed artificial input is useful in testing the plausibility of a
learning mechanism, but comparisons with manually annotated visual scenes show
that these artificially generated data sets often do not show the same level of
complexity and ambiguity as naturally occurring perceptual context (Matusevych
et al., 2013; Beekhuizen et al., 2013).

1.2. Learning meanings from images

To investigate the plausibility of cross-situational learning in a more naturalistic
setting, we propose to use visual features from collections of images and their captions
as input to a word learning model. In the domain of human-computer interaction (HCI)
and robotics, a number of models have investigated the acquisition of terminology for
visual concepts such as color and shape from visual data. Such concepts are learned
based on communication with human users (Fleischman and Roy, 2005; Skocaj et al.,
2011). Because of the HCI setting, they need to make simplifying assumptions about
the level of ambiguity and uncertainty about the visual context.

The input data we exploit in this research has been used for much recent work in
NLP and machine learning whose goal is to develop multimodal systems for practical
tasks such as automatic image captioning. This is a fast-growing field and a detailed
discussion of it is beyond the scope of this paper. Recent systems include (Karpathy
and Fei-Fei, 2014; Mao et al., 2014; Kiros et al., 2014; Donahue et al., 2014; Vinyals
et al., 2014; Venugopalan et al., 2014; Chen and Zitnick, 2014; Fang et al., 2014). The
majority of these approaches rely on convolutional neural networks for deriving rep-
resentations of visual input, and then generate the captions using various versions of
recurrent neural network language models conditioned on image representations. For
example Vinyals et al. (2014) use the deep convolutional neural network of Szegedy
et al. (2014) trained on ImageNet to encode the image into a vector. This representa-
tion is then decoded into a sentence using a Long Short-Term Memory recurrent neural
network (Hochreiter and Schmidhuber, 1997). Words are represented by embedding
them into a multidimensional space where similar words are close to each other. The
parameters of this embedding are trainable together with the rest of the model, and
are analogous to the vector representations learned by the model proposed in this pa-
per. The authors show some example embeddings but do not analyze or evaluate them
quantitatively, as their main focus is on the captioning performance.

Perhaps the approach most similar to ours is the model of Bruni et al. (2014).
In their work, they train multimodal distributional semantics models on both textual
information and bag-of-visual-words features extracted from captioned images. They
use the induced semantic vectors for simulating word similarity judgments by humans,
and show that a combination of text and image-based vectors can replicate human
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judgments better than using uni-modal vectors. This is a batch model and is not meant
to simulate human word learning from noisy context, but their evaluation scheme is
suitable for our purposes.

Lazaridou et al. (2015) propose a multimodal model which learns word represen-
tations from both word co-occurrences and from visual features of images associated
with words. Their input data consists of a large corpus of text (without visual informa-
tion) and additionally of the ImageNet dataset (Deng et al., 2009) where images are
labeled with WordNet synsets. 1 Thus, strictly speaking their model does not imple-
ment cross-situational learning because a subset of words is unambiguously associated
with certain images.

1.3. Our study

In this paper we investigate the plausibility of cross-situational learning of word
meanings in a more naturalistic setting. Our goal is to simulate this mechanism under
the same constraints that humans face when learning a language, most importantly by
learning in a piecemeal and incremental fashion, and facing noise and ambiguity in
their perceptual environment. (We do not investigate the role of sentence structure on
word learning in this study, but we discuss this issue in Section 5).

For simulation of the visual context we use two collections of images of natu-
ral scenes, Flickr8K (F8k) (Rashtchian et al., 2010) and Flickr30K (F30k) (Young
et al., 2014), where each image is associated with several captions describing the
scene. We extract visual features from the images and learn to associate words with
probability distributions over these features. This has the advantage that we do not
need to simulate ambiguity or referential uncertainty – the data has these characteris-
tics naturally.

The challenge is that, unlike in much previous work on cross-situational learning
of word meanings, we do not know the ground-truth word meanings, and thus cannot
directly measure the progress and effectiveness of learning. Instead, we use indirect
measures such as (i) the correlation of the similarity of learned word meanings to word
similarities as judged by humans, and (ii) the accuracy of producing words in response
to an image. Our results show that from pairings of scenes and descriptions it is fea-
sible to learn meaning representations that approximate human similarity judgments.
Furthermore, we show that our model is able to name image descriptors considerably
better than the frequency baseline and names a large variety of these target concepts.
In addition we present a pilot experiment for word production using the ImageNet data
set and qualitatively show that our model names words that are conceptually related
to the images.

1. The synsets of WordNet are groups of synonyms that represent an abstract concept.
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2. Word learning model

Latest existing cross-situational models formulate word learning as a translation
problem, where the learner must decide which words in an utterance correspond to
which symbols (or potential referents) in the perceptual context (Yu and Ballard, 2007;
Fazly et al., 2010). For each new utterance paired with a symbolic representation of
the visual scene, first the model decides which word is aligned with which symbol
based on previous associations between the two. Next, it uses the estimated alignments
to update the meaning representation associated with each word.

We introduce a novel computational model for cross-situational word learning
from captioned images. We reformulate the problem of learning the meaning of
words as a translation problem between words and a continuous representation of
the scene; that is, the visual features extracted from the image. In this setting, the
model learns word representations by taking images and their descriptions one pair
at a time. To learn correspondences between English words and image features, we
borrow and adapt the translation-table estimation component of the IBM Model 1
(Brown et al., 1993). The learning results in a translation table between words and
image-features, i.e. a list of probabilities of image-features given a word.

2.1. Visual input

The features of the images are extracted by training a 16-layer convolutional neu-
ral network (CNN) (Simonyan and Zisserman, 2014) on an object recognition task. 2

The network is trained to discriminate among 1000 different object labels on the Ima-
geNet dataset (Deng et al., 2009). The last layer of the CNN before the classification
layer contains high level visual features of the images, invariant to particulars such as
position, orientation or size. We use the activation vector from this layer as a repre-
sentation of the visual scene described in the corresponding caption. Each caption is
paired with such a 4096-dimensional vector and used as input to a cross-situational
word learner. Figure 1 shows three sample images from the F8k dataset most closely
aligned with a particular dimension, as measured by the cosine similarity between the
image and a unit vector parallel to the dimension axis. For example, dimension 1000
seems to be related to water, 2000 to dogs or perhaps grass, and 3000 to children.

2. We used the F8k and F30k features available at http://cs.stanford.edu/people/

karpathy/deepimagesent/ and the data handling utilities from https://github.com/

karpathy/neuraltalk for our experiments. The pre-trained CNN can be used through the
Caffe framework (Jia et al., 2014) and is available at the ModelZoo https://github.com/

BVLC/caffe/wiki/Model-Zoo

http://cs.stanford.edu/people/karpathy/deepimagesent/
http://cs.stanford.edu/people/karpathy/deepimagesent/
https://github.com/karpathy/neuraltalk
https://github.com/karpathy/neuraltalk
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
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Figure 1: Dimensions with three most closely aligned images from F8k.

2.2. Learning algorithm

We adapt the IBM model 1 estimation algorithm in the following ways 3: (i) like
Fazly et al. (2010) we run it in an online fashion, and (ii) instead of two sequences
of words, our input consists of one sequence of words on one side, and a vector of
real values representing the image on the other side. The dimensions are indexes
into the visual feature “vocabulary”, while the values are interpreted as weights of
these “vocabulary items”. In order to get an intuitive understanding of how the model
treats the values in the feature vector, we could informally liken these weights to word
counts. As an example consider the following input with a sentence and a vector of 5
dimensions (i.e. 5 features):

– The blue sky
– (2, 0, 2, 1, 0)

Our model treats this equivalently to the following input, with the values of the di-
mensions converted to “feature occurrences” of each feature fn.

– The blue sky
– f1 f1 f3 f3 f4

3. The source code for our model is available at https://github.com/kadarakos/

IBMVisual

https://github.com/kadarakos/IBMVisual
https://github.com/kadarakos/IBMVisual
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The actual values in the image vectors are always non-negative, since they come
from a rectified linear (ReLu) activation. However, they can be fractional, and thus
strictly speaking cannot be literal counts. We simply treat them as generalized, frac-
tional feature “counts”. The end result is that given the lists of words in the image
descriptions and the corresponding image vectors the model learns a probability dis-
tribution t(f |w) over feature-vector indexes f for every word w in the descriptions.

Algorithm 1 Sentence-vector alignment model (VISUAL)
1: Input: visual feature vectors paired with sentences ((V1, S1), . . . , (VN , SN ))
2: Output: translation table t(f |w)
3: D ← dimensionality of feature vectors
4: ε← 1 . Smoothing coefficient
5: a[f, w]← 0, ∀f, w . Initialize count tables
6: a[·, w]← 0, ∀w
7: t(f |w)← 1

D . Translation probability t(f |w)
8: for each input pair (vector V , sentence S) do
9: for each feature index f ∈ {1, . . . , D} do

10: Zf ←
∑
w∈S t(f |w) . Normalization constant Zf

11: for each word w in sentence S do
12: c← 1

Zf
× V [f ]× t(f |w) . Expected count c

13: a[f, w]← a[f, w] + c
14: a[·, w]← a[·, w] + c . Updates to count tables
15: t(f |w)← a[f,w]+ε

a[·,w]+εD . Recompute translation probabilities

This is our sentence-vector alignment model, VISUAL. In the interest of cognitive
plausibility, we train it using a single-pass, online algorithm. Algorithm 1 shows the
pseudo-code. Our input is a sequence of pairs of D-dimensional feature vectors and
sentences, and the output is a translation table t(f |w). We maintain two count tables
of expected counts a[f, w] and a[·, w] which are used to incrementally recompute the
translation probabilities t(f |w). The initial translation probabilities are uniform (line
7). In lines 12-14 the count tables are updated, based on translation probabilities
weighted by the feature value V [f ], and normalized over all the words in the sentence.
In line 15 the translation table is in turn updated.

2.3. Baseline models

To asses the quality of the meaning representations learned by our sentence-vector
alignment model VISUAL, we compare its performance in a set of tasks to the follow-
ing baselines:

– MONOLING: instead of aligning each sentence with its corresponding visual
vector, this variation aligns two copies of each sentence with each other, and thus
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learns word representations based on word-word co-occurrences 4.
– WORD2VEC: for comparison we also report results with the skip-gram embed-

ding model, also known as WORD2VEC which builds word representations based on
word-word co-occurrences as well (Mikolov et al., 2013a; Mikolov et al., 2013b).
WORD2VEC learns a vector representation (embedding) of a word which maximizes
performance on predicting words in a small window around it.

3. Experiments

3.1. Image datasets

We use image-caption datasets for our experiments. F8k (Rashtchian et al., 2010)
consists of 8000 images and five captions for each image. F30k (Young et al., 2014)
extends the F8k and contains 31,783 images with five captions each summing up to
158,915 sentences. For both data sets we use the splits from Karpathy and Fei-Fei
(2014), leaving out 1000 images for validation and 1000 for testing from each set.
Table 1 summarizes the statistics of the Flickr image-caption datasets.

Table 1: Flickr image caption datasets
F8k F30k

Train images 6,000 29,780
Validation images 1,000 1,000
Test images 1,000 1,000
Image in total 8,000 31,780
Captions per image 5 5
Captions in total 40,000 158,900

For the Single-concept image descriptions experiments reported in Section 3.4, we
also use the ILSVRC2012 subset of ImageNet (Russakovsky et al., 2014), a widely-
used data set in the computer vision community. It is an image database that annotates
the WordNet noun synset hierarchy with images. It contains 500 images per synset on
average.

3.2. Word similarity experiments

A common evaluation task for assessing the quality of learned semantic vectors
for words is measuring word similarity. A number of experiments have elicited human
ratings on the similarity and/or relatedness of a list of word pairs. For instance one of
the data sets we used was the SimLex999 data set, which contains similarity judgments

4. This model does not estimate probabilities of translation of a word to itself, that is probabili-
ties of the form t(w|w).
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for 666 noun pairs (organ-liver 6.15), 222 verb pairs (occur-happen 1.38) and 111
adjective pairs (nice-cruel 0.67) elicited by 500 participants recruited from Mechanical
Turk . These types of data sets are commonly used as benchmarks for models of
distributional semantics, where the learned representations are expected to show a
significant positive correlation with human similarity judgments on a large number of
word pairs.

We selected a subset of the existing benchmarks according to the size of their
word pairs that overlap with our restricted vocabulary. We ran a statistical power
analysis test to estimate the minimum number of required word pairs needed in our
experiments. The projected sample size wasN = 210 with p = .05, effect-size r = .2
and power = 0.9. Thus some of the well-known benchmarks were excluded due to
their small sample size after we excluded words not present in our datasets. 5

The four standard benchmarks that contain the minimum number of word pairs are:
the full WS-353 (Finkelstein et al., 2001), MTurk-771 (Radinsky et al., 2011), MEN
(Bruni et al., 2014) and SimLex999 (Hill et al., 2014). Note that the MTurk dataset
only contains similarity judgments for nouns. Also, a portion of the full WordSim-353
dataset reports relatedness ratings instead of word similarity.

3.3. Effect of concreteness on similarity judgments

The word similarity judgments provide a macro evaluation about the overall qual-
ity of the learned word representations. For more fine-grained analysis we turn to
the dichotomy of concrete (e.g. chair, car) versus abstract (e.g. love, sorrow) nouns.
Evidence presented by (Recchia and Jones, 2012) shows that in naming and lexical
decision tasks the early activation of abstract concepts is facilitated by rich linguistic
contexts, while physical contexts promote the activation of concrete concepts. Based
on these recent findings, Bruni et al. (2014) suggest that in case of computational mod-
els concrete words (such as names for physical objects and visual properties) are easier
to learn from perceptual/visual input and abstract words are mainly learned based on
their co-occurrence with other words in text. Following Bruni et al. (2014), but using
novel methodology, we also test this idea and examine whether more concrete words
benefit more from visual features compared with less concrete ones.

In their work Bruni et al. (2014) use the automatic method from Turney et al.
(2011) to assign concreteness values to words and split the MEN corpus in concrete
and abstract chunks. From their experiments they draw the conclusion that visual in-
formation boosts their models’ performance on concrete nouns. However, whereas
the multi-modal embeddings of Bruni et al. (2014) are trained using an unbalanced
corpus of large quantities of textual information and far poorer visual stimuli, our vi-
sual embeddings are learned on a parallel corpus of sentences paired with images.

5. These include RG-65 (Rubenstein and Goodenough, 1965), MC-30 (Miller and Charles,
1991) and YP-130 (Yang and Powers, 2006).
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To our purposes, this balance in the sources of information is critical as we aim at
modeling word learning in humans. As a consequence of this setting we rather hy-
pothesized that solely relying on visual features would result in better performance on
more concrete words than on abstract ones and conversely, learning language solely
from textual features would lead to higher correlations on the more abstract portion of
the vocabulary.

To test this hypothesis, MEN, MTurk and Simlex999 datasets were split in two
halves based on concreteness score of the word pairs. The "abstract" and "concrete"
subclasses for each data set are obtained by ordering the pairs according to their con-
creteness and then partition the ordered tuples in halves. We defined the concrete-
ness of a word pair as the product of the concreteness scores of the two words. The
scores are taken from the University of South Florida Free Association Norms dataset
(Nelson et al., 1998). Table 2 provides an overview of the benchmarks we use in this
study. Column "Concreteness" shows the average concreteness scores of all words
pairs per data set, while columns "Concrete" and "Abstract" contain the average con-
creteness of the concrete and abstract halves of the word-pairs respectively.

Table 2: Summary of the word-similarity benchmarks, showing the number of word
pairs in the benchmarks and the size of their overlap with the F8k and F30k data sets.
The table also reports the average concreteness of the whole, concrete and abstract
portions of the benchmarks.

#Pairs Concreteness
Total F8k F30k Full set Concrete Abstract

WS353 353 104 232 25.09 35.44 16.22
SimLex999 999 412 733 23.86 35.72 11.99
MEN 3000 2069 2839 29.77 36.28 23.26
MTurk771 771 295 594 25.89 34.02 16.16

3.4. Word production

Learning multi-modal word representations gives us the advantage of replicating
real-life tasks such as naming visual entities. In this study, we simulate a word pro-
duction task as follows: given an image from the test set, we rank all words in our
vocabulary according to their cosine similarity to the visual vector representing the
image. We evaluate these ranked lists in two different ways.

3.4.1. Multi-word image descriptions.

We use images from the test portion of the F8k and F30k datasets as benchmarks.
These images are each labeled with up to five captions, or multi-word descriptions
of the content of the image. To evaluate the performance of our model in producing
words for each image, we construct the target description of an image as the union of
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the words in all its captions (with stop-words 6 removed). We compare this set with
the top N words in our predicted ranked word list. As a baseline for this experiment
we implemented a simple frequency baseline FREQ, which for every image retrieves
the top N most frequent words. The second model COSINE uses our VISUAL word-
embeddings and ranks the words based on their cosine similarity to the given image.
The final model PRIOR implements a probabilistic interpretation of the task

P (wi|ij) ∝ P (ij |wi)× P (wi), [1]

where wi is a word from the vocabulary of the captions and ij is an image from
the collections of images I . The probability of an image given a word is defined as

P (ij |wi) =
cosine(ij , wi)∑|I|
k=1 cosine(ik, wi),

[2]

where cosine(ij , wi) is the cosine between the vectorial representation of ij and
the VISUAL word-embedding wi. Since in any natural language corpus the distribu-
tion of word frequencies is expected to be very heavy tailed, in the model PRIOR,
rather than using maximum likelihood estimation, we reduce the importance of the
differences in word-frequencies and smooth the prior probability P (wi) as described
by Equation 3 - where N is the number of words in the vocabulary.

P (wi) =
log(count(wi))∑N
j=1 log(count(wj))

[3]

As a measure of performance, we report Precision at 5 (P@5) between the ranked
word list and the target descriptions; i.e., proportion of correct target words among
the top 5 predicted ranked words. Figure 2 shows an example of an image and its
multi-word captions in the validation portion of the F30k dataset.

3.4.2. Single-concept image descriptions.

Even though we use separate portions of F8k and F30k for training and testing,
these subsets are still very similar. To test how general the VISUAL word represen-
tations are we use images from the ILSVRC2012 subset of ImageNet (Russakovsky
et al., 2014) as benchmark. The major difference between these images and the ones
from F8k and F30k datasets is that labels of the images in ImageNet are synsets from
WordNet, which identify a single concept present in the image instead of providing
a natural descriptions of its full content. Providing a quantitative evaluation in this
case is not straightforward for two main reasons. First, the vocabulary of our model
is restricted and the synsets in the ImageNet dataset are quite varied. Second, the

6. Function words such as the, is, at, what, there, we used the stop-word list from the Python
library NLTK.
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Figure 2: Multiword image description example. Below the image are the 5 captions
describing the image, the union of words that we take as targets, the to 5 predicted and
the list of correct words and the P@5 score for the given test case.

synset labels can be very precise, much more so than the descriptions provided in the
captions that we use as our training data.

To attempt to solve the vocabulary mis-match problem, we use synset hypernyms
from WordNet as substitute target descriptors. If none of the lemmas in the target
synset are in the vocabulary of the model, the lemmas in the hypernym synset are
taken as new targets, until we reach the root of the taxonomy. However, we find that
in a large number of cases these hypernyms are unrealistically general given the image.
Figure 3 illustrates these issues.

4. Results

We evaluate our model on two main tasks: simulating human judgments of word
similarity 7 and producing labels for images. For all performance measures in this
sections (Spearman’s ρ, P@5) we estimated the confidence intervals using the Bias-
corrected Accelerated bootstrapping method 8 (Efron, 1982).

7. We made available the source code used for running word similarity/relatedness experiments
on https://bitbucket.org/kadar_akos/wordsims

8. Provided by the scikits-bootstrap Python package https://github.com/cgevans/

scikits-bootstrap

https://bitbucket.org/kadar_akos/wordsims
https://github.com/cgevans/scikits-bootstrap
https://github.com/cgevans/scikits-bootstrap
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Figure 3: Example of the Single-concept image description task from the valida-
tion portion of the ILSVRC2012 subset of ImageNet. The terms "sea anemone" and
"anemone" are unknown to VISUAL and "animal" is the first word among it’s hyper-
nyms that appear in the vocabulary of F30k.

4.1. Word Similarity

We simulate the word similarity judgment task using the induced word vectors
by three models: VISUAL, MONOLING, and WORD2VEC. All models were trained
on the tokenized training portion of the F30k data set. While VISUAL is presented
with pairs of captions and the 4096 dimensional image-vectors, MONOLING and
WORD2VEC 9 are trained solely on the sentences in the captions. The smoothing
coefficient ε = 1.0 was used for VISUAL and MONOLING. The WORD2VEC model
was run for one iteration with default parameters except for the minimum word count
(as our models also consider each word in each sentence): feature-vector-size=100, al-
pha=0.025, window-size=5, min-count=5, downsampling=False, alpha=0.0001, model=skip-
gram, hierarchical-sampling=True, negative-sampling=False.

Figure 4 illustrates the correlation of the similarity judgments by the three mod-
els with those of humans on four datasets. Table 3 shows the results in full detail:
it reports the Spearman rank-order correlation coefficient between the human simi-
larity judgments and the pairwise cosine similarities of the word vectors per data set
along with the confidence intervals estimated by using bootstrap (the correlation val-
ues marked by a * were significant at level p < 0.05).

Although VISUAL achieves a higher correlation than the other two models on all
datasets, the overlapping confidence intervals suggest that in this particular setting,
both VISUAL and WORD2VEC perform very similarly in approximating human sim-

9. we used the word2vec implementation from the gensim Pyhton package available at https:
//radimrehurek.com/gensim/models/word2vec.html.

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
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Figure 4: Comparison of models on approximating word similarity judgments. The
length of the bars indicate the size of the correlation measured by Spearman’s ρ, longer
bars indicate better similarity between the models’ predictions and the human data.
The labels on the y-axis contain the names of the data sets and indicate the number
of overlapping word pairs with the vocabulary of the F30k data set. All models were
trained on the training portion of the F30k data set.

ilarity judgments. This result is particularly interesting as these models exploit differ-
ent sources of information: The input to WORD2VEC is text only (i.e., the set of cap-
tions) and it learns from word-word co-occurrences, while VISUAL takes pairs of im-
age vectors and sentences as input, and thus learns from word-scene co-occurrences.

The significant medium-sized correlation (p < .001, ρ = 0.47 95% CI [0.44,
0.50]) with reasonably narrow confidence intervals on the large number of samples,
N = 2839, of the MEN data set supports the hypothesis that the similarities between
the meaning representations learned by VISUAL mirror the distance between word
pairs as estimated by humans. This result suggests that it is feasible to learn word
meanings from co-occurrences of sentences with noisy visual scenes. However, on all
other data sets, the effect sizes for all models are small and their performances vary
considerably given different subsamples of the benchmarks.
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Table 3: Word similarity correlations with human judgments measured by Spearman’s
ρ. Models were trained on the training portion of the F30k data set. The * next to the
values marks the significance of the correlation at level p < 0.05. The confidence
intervals for the correlation are estimated using bootstrap.

WS SimLex MEN MTurk

VISUAL 0.18* 0.22* 0.47* 0.27*

CI[0.05, 0.32] CI[0.15, 0.29] CI[0.44, 0.50] CI[0.19, 0.34]

MONOLING 0.08 0.18* 0.23* 0.17*

CI[-0.06, 0.21] CI[0.11, 0.25] CI[0.19, 0.26] CI[0.04, 0.19]

WORD2VEC 0.16* 0.10* 0.47* 0.19*

CI[0.02, 0.28] CI[0.02, 0.17] CI[0.43 0.49] CI[0.11, 0.26]

4.1.1. Concreteness

Based on the previous findings of Bruni et al. (2014) we expected that models
relying on perceptual cues perform better on the concrete portion of the word-pairs
in the word-similarity benchmarks. Furthermore, we expected approximating human
word similarity judgments on concrete word-pairs to be generally easier. As discussed
in Section 3.3, we split the data sets into abstract and concrete halves and ran the
word similarity experiments on the resulting portions of the word-pairs for compari-
son. Table 4 only reports the results on MEN and Simlex999 as these were the only
benchmarks that had at least 200 word-pairs after partitioning. Table 2 summarizes
the average concreteness of the different portions of the data sets.

On all data sets VISUAL seems to perform considerably better on the concrete
word-pairs then on abstract ones. On the abstract half of the MEN data set the per-
formance of VISUAL is ρ = 0.35, 95% CI[0.29, 0.41], while it is ρ = 0.56, 95%
CI[0.49, 0.59] on the concrete portion. The non-overlapping confidence intervals sup-
port the hypothesis that VISUAL does significantly better on the concrete word pairs.
This pattern, however, is not observed for WORD2VEC as there is no significant dif-
ference in its performance given the different concreteness levels of the word pairs.
Splitting the word pairs in two groups based on their concreteness scores reveals that
performance of VISUAL is affected by concreteness and that it only performs better
than WORD2VEC on the more concrete word pairs. Another pattern that the analysis
reveals is that the average concreteness of the data sets is reflected in the performance
of the models: for both VISUAL and WORD2VEC the rank of their performance fol-
lows the rank of concreteness of the benchmarks.
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Table 4: The table reports the Spearman rank-order correlation coefficient on the ab-
stract and concrete portions of the data sets separately as well as the confidence in-
tervals around the effect-sizes estimated by using bootstrap. The * next to the values
indicates significance at level p < 0.05.

MEN SimLex

Abstract Concrete Abstract Concrete

Visual 0.35* 0.55* 0.16* 0.39*

CI[0.29, 0.41] CI[0.49, 0.59] CI[0.04, 0.25] CI[0.28, 0.47]

Word2Vec 0.48 0.45 0.14 0.18

CI[0.43, 0.53] CI[0.39, 0.50] CI[0.02, 0.25] CI[0.07, 0.29]

Figure 5: Models’ performance on word similarity judgments as a function of the
concreteness of the word pairs.

4.2. Word production

In this set of experiments, we evaluate the word meaning vectors learned by VI-
SUAL by simulating the task of word production for an image, as described in Sec-
tion 3.4. These experiments can be viewed as computational simulations of a language
task where human subjects associate words to given images. Words were ranked ac-
cording to their cosine similarity to a given image vector. The VISUAL model was
trained on the training portion of the F8k and F30k data sets. We report results on
two variations of the word production task: multi-word image descriptors, and single-
concept image descriptors.
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4.2.1. Multi-word image descriptors

The objective of the model in this experiment is to rank only words in the top N
that occur in the set containing all words from the concatenation of the 5 captions of
a given image with stop-words removed. The ranking models used for these experi-
ments (FREQ, COSINE, and PRIOR) are described in Section 3.4. Table 5 reports the
results of the experiments on the respective test portions of the F8k and F30k datasets
as estimated by P@5. We estimated the variability of the models’ performance by
calculating these measures per sample and estimating the confidence intervals around
the means using bootstrap.

On these particular data sets the naive frequency baseline can perform particularly
well: by only retrieving the sequence < wearing ,woman, people, shirt , blue >, the
ranking model FREQ scores a P@5=.27 on F30k. Incorporating both the meaning
representations learned by VISUAL and the prior probabilities of the words, the non-
overlapping confidence intervals suggest that PRIOR significantly outperforms FREQ
- P@5=0.42, 95% CI[0.41, 0.44].

In addition to P@5, we also report the number of word types that were retrieved
correctly given the images (column Words@5 on Table 5). This measure was inspired
by the observation that by focusing only on the precision scores it seems like incorpo-
rating visual information rather than just using raw word-frequency statistics provides
a significant, but small advantage. However, taking into consideration that PRIOR re-
trieves 178 word types correctly, suggests that it can retrieve less generic words that
are especially descriptive of fewer scenes.

To have a more intuitive grasp on the performance of PRIOR it is worth taking also
into consideration the distribution of P@5 scores over the test cases. When trained and
tested on F30k in most cases (34%) PRIOR retrieves two words correctly in the top 5
and in 23% and 25% of the cases it retrieves one and three respectively. In only 6% of
the time P@5 = 0, which means that it is very unlikely that PRIOR named unrelated
concepts given an image. These results suggest that VISUAL learns word meanings
that allow for labeling unseen images with reasonable accuracy using a large variety
of words.

4.2.2. Single-concept image descriptors

The motivation for this experiment was to assess the generalizability of the word-
representations learned by VISUAL. Similarly to the previous task, the goal here is
to associate words to a given image, but in this case the images are drawn from the
validation set of ILSVRC2012 portion of ImageNet (Russakovsky et al., 2014). Pro-
viding quantitative results is not as straightforward as in the case of multi-word image
descriptors, since these images are not labeled with target descriptions, but with a
synset from WordNet. As demonstrated in Figure 6, some of the lemmas in the target
synsets are far too specific or unnatural for our purposes, for example schooner for an
image depicting a sailboat or alp for an image of a mountain. In other cases, a partic-
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Table 5: Results for the Multi-word image descriptors experiments reported on the
test sets of F8k and F30k. Words@5 the number of correctly retrieved word types in
the top 5. The confidence intervals below P@5 scores were estimated using bootstrap.

F8k F30k

P@5 Words@5 P@5 Words@5

FREQ 0.20 5 0.27 5

CI[0.19, 0.21] CI[0.26, 0.29]

COSINE 0.16 310 0.14 371

CI[0.15, 0.17] CI[0.13, 0.15]

PRIOR 0.44 135 0.42 178

CI[0.42, 0.45] CI[0.41, 0.44]

ular object is named which might not be the most salient one, for example freight car
for a picture of a graffiti with three pine trees on the side of railway carriage.

We made an attempt to search through the lemmas in the hypernym paths of the
synsets until a known target lemma is reached. However, as demonstrated by exam-
ples in Figure 6, these hypernyms are often very general (e.g. device) and predicting
such high-level concepts as descriptors of the image is unrealistic. In other cases,
the lemmas from the hypernym synsets are simply misleading; for example, wood for
describing a wooden wind instrument. As can be seen in the examples in Figure 6,
the top ranked words predicted by our model are in fact conceptually more similar to
the images covering a variety of objects and concepts than the labels specified in the
dataset.

We conclude that in the future to quantitatively investigate the cognitive plausibil-
ity of cross-situational models of word learning, the collection of feature production
norms for ImageNet (Russakovsky et al., 2014) would be largely beneficial.

5. Discussion and conclusion

We have presented a computational cross-situational word learning model that
learns word meanings from pairs images and their natural language descriptions. Un-
like previous word learning studies which often rely on artificially generated percep-
tual input, the visual features we extract from images of natural scenes offers a more
realistic simulation of the cognitive tasks humans face, since our data includes a sig-
nificant level of ambiguity and referential uncertainty.

Our results suggest that the proposed model can learn meaningful representations
for individual words from varied scenes and their multiword descriptions. Learning
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Figure 6: The caption above the images show the target labels, the hypernyms that
were considered as a new target if the original was not in the vocabulary and the
top N predicted words. In a large number of cases the guesses of the model are
conceptually similar to the images, although, do not actually overlap with the labels
or the hypernyms.

takes place incrementally and without assuming access to single-word unambiguous
utterances or corrective feedback. When using the learned visual vector representa-
tions for simulating human ratings of word-pair similarity, our model shows significant
correlation with human similarity judgments on a number of benchmarks. Moreover,
it moderately outperforms other models that only rely on word-word co-occurrence
statistics to learn word meaning.

The comparable performance of visual versus word-based models seems to be
in line with Louwerse (2011), who argues that linguistic and perceptual information
show a strong correlation and therefore meaning representations solely based on lin-
guistic data are not distinguishable from representations learned from perceptual infor-
mation. However, an analysis of the impact of word concreteness on the performance
of our model shows that visual features are especially useful when estimating the sim-
ilarity of more concrete word pairs. In contrast, models that rely on word-based cues
do not show such improvement when judging the similarity of concrete word pairs.
These results suggest that these two sources of information might best be viewed as
complementary, as also argued by Bruni et al. (2014).
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We also used the word meaning representations that our model learns from visual
input to predict the best label for a given image. This task is similar to word pro-
duction in language learners. Our quantitative and qualitative analyses show that the
learned representations are informative and the model can produce intuitive labels for
the images in our dataset. However, as discussed in the previous section, the available
image collections and their labels are not developed to suit our purpose, as most of
the ImageNet labels are too detailed and at a taxonomic level which is not compatible
with how language learners name a visual concept.

Finally, a natural next step for this model is to also take into account cues from sen-
tence structure. For example, Alishahi and Chrupała (2012) try to include basic syn-
tactic structure by introducing a separate category learning module into their model.
Alternatively, learning sequential structure and visual features could be modeled in an
integrated rather than modular fashion, as done by the multimodal captioning systems
based on recurrent neural nets (see Section 1.2). We are currently developing this
style of integrated model to investigate the impact of structure on word learning from
a cognitive point of view.
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