@inproceedings{kazemi-etal-2016-using,
title = "Using {W}ordnet to Improve Reordering in Hierarchical Phrase-Based Statistical Machine Translation",
author = "Kazemi, Arefeh and
Toral, Antonio and
Way, Andy",
editor = "Fellbaum, Christiane and
Vossen, Piek and
Mititelu, Verginica Barbu and
Forascu, Corina",
booktitle = "Proceedings of the 8th Global WordNet Conference (GWC)",
month = "27--30 " # jan,
year = "2016",
address = "Bucharest, Romania",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2016.gwc-1.24",
pages = "155--161",
abstract = "We propose the use of WordNet synsets in a syntax-based reordering model for hierarchical statistical machine translation (HPB-SMT) to enable the model to generalize to phrases not seen in the training data but that have equivalent meaning. We detail our methodology to incorporate synsets{'} knowledge in the reordering model and evaluate the resulting WordNet-enhanced SMT systems on the English-to-Farsi language direction. The inclusion of synsets leads to the best BLEU score, outperforming the baseline (standard HPB-SMT) by 0.6 points absolute.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kazemi-etal-2016-using">
<titleInfo>
<title>Using Wordnet to Improve Reordering in Hierarchical Phrase-Based Statistical Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arefeh</namePart>
<namePart type="family">Kazemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Toral</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andy</namePart>
<namePart type="family">Way</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-27–30 jan</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Global WordNet Conference (GWC)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christiane</namePart>
<namePart type="family">Fellbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piek</namePart>
<namePart type="family">Vossen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Verginica</namePart>
<namePart type="given">Barbu</namePart>
<namePart type="family">Mititelu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Corina</namePart>
<namePart type="family">Forascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">Bucharest, Romania</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose the use of WordNet synsets in a syntax-based reordering model for hierarchical statistical machine translation (HPB-SMT) to enable the model to generalize to phrases not seen in the training data but that have equivalent meaning. We detail our methodology to incorporate synsets’ knowledge in the reordering model and evaluate the resulting WordNet-enhanced SMT systems on the English-to-Farsi language direction. The inclusion of synsets leads to the best BLEU score, outperforming the baseline (standard HPB-SMT) by 0.6 points absolute.</abstract>
<identifier type="citekey">kazemi-etal-2016-using</identifier>
<location>
<url>https://aclanthology.org/2016.gwc-1.24</url>
</location>
<part>
<date>2016-27–30 jan</date>
<extent unit="page">
<start>155</start>
<end>161</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Wordnet to Improve Reordering in Hierarchical Phrase-Based Statistical Machine Translation
%A Kazemi, Arefeh
%A Toral, Antonio
%A Way, Andy
%Y Fellbaum, Christiane
%Y Vossen, Piek
%Y Mititelu, Verginica Barbu
%Y Forascu, Corina
%S Proceedings of the 8th Global WordNet Conference (GWC)
%D 2016
%8 27–30 jan
%I Global Wordnet Association
%C Bucharest, Romania
%F kazemi-etal-2016-using
%X We propose the use of WordNet synsets in a syntax-based reordering model for hierarchical statistical machine translation (HPB-SMT) to enable the model to generalize to phrases not seen in the training data but that have equivalent meaning. We detail our methodology to incorporate synsets’ knowledge in the reordering model and evaluate the resulting WordNet-enhanced SMT systems on the English-to-Farsi language direction. The inclusion of synsets leads to the best BLEU score, outperforming the baseline (standard HPB-SMT) by 0.6 points absolute.
%U https://aclanthology.org/2016.gwc-1.24
%P 155-161
Markdown (Informal)
[Using Wordnet to Improve Reordering in Hierarchical Phrase-Based Statistical Machine Translation](https://aclanthology.org/2016.gwc-1.24) (Kazemi et al., GWC 2016)
ACL