@inproceedings{partalas-etal-2016-comparing,
title = "Comparing Named-Entity Recognizers in a Targeted Domain: Handcrafted Rules vs Machine Learning",
author = "Partalas, Ioannis and
Lopez, C{\'e}dric and
Segond, Fr{\'e}d{\'e}rique",
editor = "Danlos, Laurence and
Hamon, Thierry",
booktitle = "Actes de la conf{\'e}rence conjointe JEP-TALN-RECITAL 2016. volume 2 : TALN (Posters)",
month = "7",
year = "2016",
address = "Paris, France",
publisher = "AFCP - ATALA",
url = "https://aclanthology.org/2016.jeptalnrecital-poster.10/",
pages = "389--395",
abstract = "Comparing Named-Entity Recognizers in a Targeted Domain : Handcrafted Rules vs. Machine Learning Named-Entity Recognition concerns the classification of textual objects in a predefined set of categories such as persons, organizations, and localizations. While Named-Entity Recognition is well studied since 20 years, the application to specialized domains still poses challenges for current systems. We developed a rule-based system and two machine learning approaches to tackle the same task : recognition of product names, brand names, etc., in the domain of Cosmetics, for French. Our systems can thus be compared under ideal conditions. In this paper, we introduce both systems and we compare them."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="partalas-etal-2016-comparing">
<titleInfo>
<title>Comparing Named-Entity Recognizers in a Targeted Domain: Handcrafted Rules vs Machine Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="family">Partalas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cédric</namePart>
<namePart type="family">Lopez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédérique</namePart>
<namePart type="family">Segond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 2 : TALN (Posters)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laurence</namePart>
<namePart type="family">Danlos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Hamon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>AFCP - ATALA</publisher>
<place>
<placeTerm type="text">Paris, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Comparing Named-Entity Recognizers in a Targeted Domain : Handcrafted Rules vs. Machine Learning Named-Entity Recognition concerns the classification of textual objects in a predefined set of categories such as persons, organizations, and localizations. While Named-Entity Recognition is well studied since 20 years, the application to specialized domains still poses challenges for current systems. We developed a rule-based system and two machine learning approaches to tackle the same task : recognition of product names, brand names, etc., in the domain of Cosmetics, for French. Our systems can thus be compared under ideal conditions. In this paper, we introduce both systems and we compare them.</abstract>
<identifier type="citekey">partalas-etal-2016-comparing</identifier>
<location>
<url>https://aclanthology.org/2016.jeptalnrecital-poster.10/</url>
</location>
<part>
<date>2016-7</date>
<extent unit="page">
<start>389</start>
<end>395</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparing Named-Entity Recognizers in a Targeted Domain: Handcrafted Rules vs Machine Learning
%A Partalas, Ioannis
%A Lopez, Cédric
%A Segond, Frédérique
%Y Danlos, Laurence
%Y Hamon, Thierry
%S Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 2 : TALN (Posters)
%D 2016
%8 July
%I AFCP - ATALA
%C Paris, France
%F partalas-etal-2016-comparing
%X Comparing Named-Entity Recognizers in a Targeted Domain : Handcrafted Rules vs. Machine Learning Named-Entity Recognition concerns the classification of textual objects in a predefined set of categories such as persons, organizations, and localizations. While Named-Entity Recognition is well studied since 20 years, the application to specialized domains still poses challenges for current systems. We developed a rule-based system and two machine learning approaches to tackle the same task : recognition of product names, brand names, etc., in the domain of Cosmetics, for French. Our systems can thus be compared under ideal conditions. In this paper, we introduce both systems and we compare them.
%U https://aclanthology.org/2016.jeptalnrecital-poster.10/
%P 389-395
Markdown (Informal)
[Comparing Named-Entity Recognizers in a Targeted Domain: Handcrafted Rules vs Machine Learning](https://aclanthology.org/2016.jeptalnrecital-poster.10/) (Partalas et al., JEP/TALN/RECITAL 2016)
ACL