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Abstract

Recurrent neural networks (RNNs) have
represented for years the state of the
art in neural machine translation. Re-
cently, new architectures have been pro-
posed, which can leverage parallel compu-
tation on GPUs better than classical RNNs.
Faster training and inference combined
with different sequence-to-sequence mod-
eling also lead to performance improve-
ments. While the new models completely
depart from the original recurrent archi-
tecture, we decided to investigate how to
make RNNs more efficient. In this work,
we propose a new recurrent NMT architec-
ture, called Simple Recurrent NMT, built
on a class of fast and weakly-recurrent
units that use layer normalization and mul-
tiple attentions. Our experiments on the
WMT14 English-to-German and WMT16
English-Romanian benchmarks show that
our model represents a valid alternative to
LSTMs, as it can achieve better results at a
significantly lower computational cost.

1 Introduction

Neural machine translation (NMT) (Sutskever et
al., 2014; Bahdanau et al., 2015) is a sequence-to-
sequence problem that requires generating a sen-
tence in a target language from a corresponding
sentence in a source language. Similarly to other
language processing task, NMT has mostly em-
ployed recurrent neural networks (RNNs) (Sen-
nrich et al., 2016b; Sennrich et al., 2017b; Luong
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and Manning, 2015), in both their LSTM (Hochre-
iter and Schmidhuber, 1997) and GRU (Cho et al.,
2014) variants, which can model long-range de-
pendencies. Besides their simplicity, the choice
of RNNs is also due to their expressive power,
which has been proven equivalent to Turing Ma-
chines (Siegelmann and Sontag, 1995). RNNs
have represented so far the state of the art of ma-
chine translation, and have constantly been en-
hanced to improve their performance. Nonethe-
less, their explicit time dependencies make train-
ing of deep RNNs computationally very expensive
(Wu et al., 2016; Barone et al., 2017).

Recent works have proposed new NMT archi-
tectures, not based on RNNs, that obtained sig-
nificant improvements both in training speed and
translation quality: the so-called convolutional
sequence-to-sequence (Gehring et al., 2017) and
the self-attentive or transformer (Vaswani et al.,
2017) models. Speed improvements by these mod-
els mainly come from the possibility of paralleliz-
ing computations over word sequences, as both
models do not have time dependencies. On the
other hand, performance improvements appear to
be due to the path lengths needed by the networks
to connect distant words in a sentence: linear for
RNNs, logarithmic for convolutional models, and
constant for the transformer.

In this paper we propose a neural architec-
ture that shares some properties with the above-
mentioned models, while maintaining a recurrent
design. Our hypothesis is that current RNNs for
NMT have not been designed to take full advan-
tage of deep structures and that better design could
lead to improved performance and efficiency. Con-
temporary to this work, Chen et al. (2018) have
shown that RNN can still outperform the trans-
former model when using better hyper-parameters.
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We start by discussing previous efforts that pro-
posed simplified and theoretically grounded ver-
sions of the LSTM RNN, which very recently
lead to the so-called Simple Recurrent Unit (SRU).
Then, we introduce our NMT architecture based
on weakly-recurrent units, which we name Sim-
ple Recurrent NMT (SR-NMT). We present ma-
chine translation results on two public benchmark,
WMT14 English-German and WMT16 English-
Romanian, and compare the results of our archi-
tecture against LSTM and SRU based NMT, us-
ing similar settings for all of them. Results show
that SR-NMT trains faster than LSTM NMT and
outperforms both LSTM and SRU NMT. In par-
ticular, SR-NMT with 8-layers even outperforms
Google’s NMT 8-layer LSTM architecture (Wu et
al., 2016). Moreover, training our model took the
equivalent of 12 days on a single K80 GPU against
the 6 days on 96 K80 GPUs reported by (Wu et al.,
2016). Finally, the NMT architecture presented in
this paper was developed in OpenNMT-py (Klein
et al., 2017) and the code is publicly available on
Github1.

2 Related works

RNNs are an important tool for NMT, and have
ranked at the top of the WMT news translation
shared tasks (Bojar et al., 2017) in the last three
years (Luong and Manning, 2015; Sennrich et al.,
2016b; Sennrich et al., 2017b). Recurrent NMT is
also the first approach that outperformed phrase-
based statistical MT (Bentivogli et al., 2016). De-
spite the important results, training of RNNs re-
mains inefficient because of an intrinsic lack of
parallelism and the necessity of redundant param-
eters in its LSTMs and GRUs (Ravanelli et al.,
2018; Zhou et al., 2016) variants. Sennrich et
al. (2017b) reduce training time in two different
ways: by reducing the network size with tied em-
beddings (Press and Wolf, 2017) and by adding
layer normalization to their architecture (Ba et al.,
2016). In fact, the reduction of the covariate shift
produced by this mechanism shows to significantly
speed up convergence of the training algorithm. Of
course, it does not alleviate the lack of parallelism.

Pascanu et al. (2014) studied RNNs and found
that the classical stacked RNN architecture does
not have a clear notion of depth. In fact, when per-
forming back-propagation through time, the gra-
dient is sent backward in both the horizontal and
1https://github.com/mattiadg/SR-NMT

vertical dimensions, thus having a double notion
of depth, which also hurts the optimization proce-
dure. They propose as a solution the notions of
deep transition, from one hidden state to the fol-
lowing hidden state, and the notion of deep out-
put, from the last RNN layer to the network output
layer. The winning model in WMT17 actually im-
plemented both of them (Sennrich et al., 2017b;
Sennrich et al., 2017a).

Balduzzi and Ghifary (2016) proposed strongly-
typed RNNs, which are variants of vanilla RNN,
GRU and LSTM that respect some constraints
and are theoretically grounded on the concept of
strongly-typed quasi-linear algebra. A strongly-
typed quasi-linear algebra imposes constraints on
the allowed operations for an RNN. In particu-
lar, in this framework there is a constraint inspired
from the type system from physics, and one in-
spired by functional programming. The idea of
types forbids the sum of vectors generated from
different branches of computation. In the case
of RNNs, this means that it is not possible to
sum among them the previous hidden state and
the current input, as they are produced by dif-
ferent computation branches. The second con-
straint aims to simulate the distinction among pure
functions and functions with side effects, typical
of functional programming. In fact, as RNNs
own a state, they can approximate algorithms and
also produce “side effects”. According to the
authors, side effects manifest when the horizon-
tal (time-dimension) connections are altered, and
are the reason behind the poor behavior of tech-
niques such as dropout (Srivastava et al., 2014)
or batch normalization (Ioffe and Szegedy, 2015)
when they are applied to the horizontal direction
straightforwardly (Laurent et al., 2016; Zaremba
et al., 2014). Thus, the side effects should be con-
fined to a part of the network that cannot hinder the
learning process. The solution they propose con-
sists in using learnable parameters only in stateless
equations (learnware), while the states are com-
bined in parameterless equations (firmware). The
combination is achieved through the use of dy-
namic average pooling (or peephole connections),
which allows the network to use equations with pa-
rameters to compute the states and the gates, and
then use the gate vectors to propagate forward hor-
izontally the hidden state. The authors show the-
oretically that strongly-typed RNNs have general-
ization capabilities similar to their classical coun-

120



terparts, and confirm it with an empirical investi-
gation over several tasks, where the strongly-typed
RNNs achieve results not worse than their classical
counterparts while training for less time. In addi-
tion, the absence of parameters in the state com-
bination cancels the problem of depth introduced
by Pascanu and colleagues, as these models need
only the classical back-propagation and not back-
propagation through time.

Quasi-recurrent neural networks (Bradbury et
al., 2017) are an extension of the previous work
that use gated convolutions in order to not com-
pute functions of isolated input tokens, but always
consider the context given by a convolutional win-
dow.

SRUs (Lei et al., 2017b), are a development of
the units proposed by Balduzzi and Ghifary de-
signed for training speed efficiency. The equations
can be easily CUDA optimized, while a good task
performance is obtained by stacking many layers
in a deep network. SRUs use highway connec-
tions (Srivastava et al., 2015) to enable the training
of deep networks. Moreover, SRUs can parallelize
the computation over the time steps also in the
decoder. In fact during training the words of the
whole sequence are known and there is no depen-
dency on the output of the previous time step. As
for strongly-typed RNNs, the information from the
context is propagated with dynamic average pool-
ing, which is much faster to compute than matrix
multiplications. SRUs were tested on a number of
tasks, including machine translation, and showed
performance similar to LSTMs, but with signifi-
cantly lower training time. However to obtain re-
sults comparable to a weak LSTM-based NMT,
SRUs require many more layers of computation.
The results show that a single SRU has a signifi-
cantly lower representation capability than a single
LSTM. In addition, every layer adds little overhead
in terms of training time per epoch, but also the re-
sults show little improvement.

In this work we further develop the idea of
SRUs, and propose an NMT architecture that can
outperform LSTM-based NMT.

3 Simple Recurrent NMT

We propose a sequence-to-sequence architecture
that uses an enhanced version of SRUs (see Fig-
ure 1) to improve the training process, in particular
with many layers, and increase the representation
capability. In fact, although Lei et al. (2017b) show

Figure 1: Core weakly-recurrent unit used in the SR-NMT
architecture. Layer normalization is performed only once for
all the transformations. At the end of the unit, the gate zt is
used for the highway connection.

that they can train networks with up to 10 layers of
SRUs, both in encoder and decoder, without over-
fitting, their results are far from the state of the art
of recurrent NMT. Our design goals are addressed
in a way similar to (Gehring et al., 2017; Vaswani
et al., 2017). We add an attention layer within ev-
ery decoder unit, and make the training more sta-
ble by adding a layer normalization layer (Ba et
al., 2016) after every matrix multiplication with a
parameter matrix. The layer normalization reduces
the covariate shift (Ioffe and Szegedy, 2015), thus
it makes easier the training of deep networks. In
addition to layer normalization, our units use high-
way connections (Srivastava et al., 2015), which
enable the training of deep networks. Our SR-
NMT architecture is shown in Figure 2

Our weakly-recurrent units used in the en-
coder and decoder both separate learnware and
firmware, although not being strongly typed (Bal-
duzzi and Ghifary, 2016) as they include highway
connections summing vectors of different types.
In the following, we introduce in detail the en-
coder and decoder networks of our simple recur-
rent NMT architecture.

3.1 Encoder

Our encoder uses bidirectional weakly-recurrent
units with layer normalization. We use two can-
didate hidden states (

−→
h i,
←−
h i) and two recursion
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Model train speed
LSTM 2L 3700 tok/s
SRU 3L 4600 tok/s
SR-NMT 1L 7900 tok/s
SR-NMT 2L 5500 tok/s
SR-NMT 3L 4300 tok/s
SR-NMT 4L 3600 tok/s

Table 1: Training speed comparison of our architectures with
LSTM and SRU baselines on WMT14 En-De. Timings are
performed on a single Nvidia Gtx 1080 GPU with CUDA 8.0
and pytorch 0.2.

gates (−→g i,
←−g i) for the two directions. The candi-

date hidden state for every time step is computed
as a weighted average among the current input and
the previous hidden state, controlled by the two
gates (peephole connections). We apply a single
normalization (LN) for each layer to improve
training convergence and impose a soft constraint
among the parameters. Finally, the input of each
layer is combined with its output through highway
connections. Formally, our encoder layer is
defined by the following equations:

xi ∈ Rd; W ∈ Rd×(4 d
2
+d)

[−→x i,
←−x i,
−→g i,
←−g i, zi] = LN(xiW)

−→
h i = (1− σ(−→g i))�

−→
h i−1 + σ(−→g i))�−→x i←−

h i = (1− σ(←−g i))�
←−
h i+1 + σ(←−g i)�←−x i

hi = (1− σ(zi))� [
−→
h i;
←−
h i] + σ(zi)� xi

3.2 Decoder

The decoder employs unidirectional units, with
layer normalization (LN) after every matrix multi-
plication similarly to the encoder units, and has an
attention mechanism in every layer. The attention
output is combined with the layer’s hidden state
in a way similar to the deep output (Pascanu et
al., 2014) used by Luong (2015). The highway
connection is applied only at the end of the unit.
The presence of multiple attention models con-
nected to the last encoder layer produces a high
gradient for the encoder output, thus we scale the
gradient dividing the attention output by

√
d. This

kind of scaling has been proposed in (Vaswani et
al., 2017) inside the transformer model, but we
observed empirically that this version works better
for our model. Formally:

yi ∈ Rd; W ∈ Rd×3d; Ws,Wc ∈ Rd×d

[ỹi,gi, zi] = LN(yiW)

s̃i = (1− σ(gi))� s̃i−1 + σ(gi)� ỹi

ci = attn(s̃i,H)(1/
√
d)

oi = tanh(LN(s̃iWs) + LN(ciWc))

si = (1− σ(zi))� oi + σ(zi)� yi

The decoder includes a standard softmax layer over
the target vocabulary which is omitted from this
description. For our architecture, we opted for a
layer-normalized version of the MLP global atten-
tion (Bahdanau et al., 2015), which showed to per-
form better than the dot attention model (Luong et
al., 2015):

α̃ij = vα tanh(LN(s̃iWas) + LN(hjWah))

αi = softmax(α̃i)

ci =
L∑

i=0

αijhj

Our SR-NMT architecture stacks several layers
both on the encoder and decoder sides, as shown in
Figure 2. The natural structure we consider is one
having the same number of layers on both sides,
although different topologies could be considered,
too.

4 Experiments

We implemented our architecture in Py-
Torch (Paszke et al., 2017) inside the OpenNMT-
py toolkit (Klein et al., 2017). All the tested
models have been trained with the Adam (Kingma
and Ba, 2015) optimizer until convergence, using
the typical initial learning rate of 0.0003, and
default values for β1 and β2. At convergence, the
models were further trained until new convergence
with learning rate 0.00015 (Bahar et al., 2017).
The model used to restart the training is selected
according to the perplexity on the validation set.
We applied dropout of 0.1 before every multipli-
cation by a parameter matrix, and in the case of
LSTM it is applied only to vertical connections
in order to use the LSTM version optimized in
CUDA. The batch size is 64 for all the experiments
and all the layers for all the models have an output
size of 500.

4.1 Datasets
We used as benchmarks the WMT14 English to
German and the WMT16 English to Romanian

122



Figure 2: SR-NMT encoder-decoder architecture. On the left, a single encoder block to repeat N times. The output of the
last layer is used as input for the decoder’s attention layers. On the right, a decoder block to repeat N times. The first three
sub-layers are the same in the encoder and the decoder, but the latter has an attention layer before the highway connection.

datasets.
In the case of WMT14 En-De, the training set

consists of the concatenation of all the training data
that were available for the 2014 shared task, the
validation set is the concatenation of newstest2012
and 2013, and newstest2014 is our test set. Then,
it was preprocessed with tokenization, punctuation
normalization and de-escaping of the special char-
acters. Furthermore, we applied BPE segmenta-
tion (Sennrich et al., 2016a) with 32,000 merge
rules. We removed from the training data all the
sentence pairs where the length of at least one
sentence exceeded 50 tokens, resulting on a train-
ing set of 3.9M sentence pairs. Furthermore, we
cleaned the training set by removing sentences in a
wrong language and poorly aligned sentence pairs.
For the cleaning process we used the automatic
pipeline developed by the ModernMT project2.

In the case of WMT16 En-Ro, we have used
the same data and preprocessing used by Sennrich
et al. (2016b) and Gehring et al. (2017). The
back-translations to replicate the experiments are

2https://github.com/ModernMT/MMT

available3 and we applied the same preprocess-
ing4, which involves punctuation normalization,
tokenization, truecasing and BPE with 40K merge
rules.

5 Evaluation

In this section, we describe the evaluation of our
models with the two benchmarks. As our main
goal is to prove that SR-NMT represent a valid al-
ternative to LSTMs, we have put more effort on
WMT14 En-De, which is widely used as a bench-
mark dataset. The experiments on WMT16 En-Ro
are aimed to verify the effectiveness of our models
in a different language pair with a different data
size.

5.1 WMT14 English to German
The results for WMT14 En-De are evaluated on
cased output, tokenized with the tokenizer script
from the Moses toolkit (Koehn et al., 2007), and
the BLEU score is computed using multi-bleu.pl
3http://data.statmt.org/rsennrich/wmt16 backtranslations/en-
ro .
4https://github.com/rsennrich/wmt16-scripts/blob/80e21e5/
sample/preprocess.sh
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from the same toolkit. With this procedure the re-
sults are comparable with the results reported from
the other publications5.

We compare our models with the results re-
ported in (Lei et al., 2017b), and also reproduce
some of their experiments. We train 4 baseline
models following the same procedure used for
SR-NMT. Three baselines are LSTM-based NMT
models as provided by OpenNMT-py, with 2, 3
and 5 layers in both encoder and decoder. The
other is an SRU model with 3 layers that we re-
implemented in PyTorch, in order to perform a
more fair comparison with our model. For the
baselines we use dropout after every layer and
MLP attention (Luong et al., 2015), both result-
ing in better results than the default implementa-
tion. Furthermore, we compare our results with
Google’s NMT system (Wu et al., 2016), Convo-
lutional S2S model (Gehring et al., 2017), and the
Transformer (Vaswani et al., 2017).

5.2 WMT16 English to Romanian

In the case of English to Romanian, we trained our
models with the same hyper-parameters used for
English to German, despite the difference in the
amount of data. The BLEU score is computed us-
ing the official script of the shared task6, which
runs on cased and detokenized output.

We did not implement baselines for this lan-
guage pair, and we compare our results with
the winning submission of the WMT16 shared
task (Sennrich et al., 2016b), with the Convolu-
tional S2S model (Gehring et al., 2017) and the
Transformer (Gu et al., 2018).

6 Results

In this section, we discuss the performance in
terms of training speed and translation quality of
our architecture.

6.1 WMT14 En-De

In the first part of Table 2 we list the results of SR-
NMT using from 1 up to 10 layers and our base-
lines. The training speeds are reported in Table 1.

SR-NMT with 3 layers has a number of pa-
rameters comparable to the LSTM baseline with
2 layers, but its training speed is 14% faster (4300
tok/s vs 3700 tok/s), and the BLEU score is 0.5

5https://github.com/tensorflow/tensor2tensor/blob/master/
tensor2tensor/utils/get ende bleu.sh
6mteval-v13a.pl

WMT14 En-De BLEU # par
LSTM 2L 21.82 62M
LSTM 3L 22.26 65M
LSTM 5L 22.72 72M
SRU 3L 20.88 59M
SR-NMT 1L 18.33 56M
SR-NMT 2L 21.82 58M
SR-NMT 3L 22.35 61M
SR-NMT 4L 23.32 63M
SR-NMT 5L 24.11 66M
SR-NMT 6L 23.93 68M
SR-NMT 7L 24.34 71M
SR-NMT 8L 24.87 73M
SR-NMT 9L 25.04 76M
SR-NMT 10L 24.98 78M
Setting of (Lei et al., 2017b)
LSTM 2L 19.67 84M
LSTM 5L 20.45 96M
SRU 3L 18.89 81M
SRU 10L 20.70 91M
GNMT (Wu et al., 2016)
LSMT 8L 24.61 -
Ensemble 26.30 -
Convolutional (Gehring et al., 2017)
ConvS2S 15L 25.16 -
Ensemble 26.43 -
Transformer (Vaswani et al., 2017)
Base 6L 27.30 65M
Big 6L 28.40 213M

Table 2: Experiments with cleaned data on WMT14 En-De
both for our architectures and the baselines, and comparison
with the state of the art.

points higher. Moreover, the implementation of
the LSTM is optimized at CUDA level, while
our architecture is fully implemented in PyTorch
and could be made faster following the optimiza-
tions of Lei et al. (2017b). Furthermore, also the
layer normalization can be implemented faster in
CUDA7. By increasing the number of LSTM lay-
ers from 2 to 5, the improvement in terms of BLEU
score is only 0.9 points, and it is worse than SR-
NMT with 4 layers.

The comparison with NMT based on SRUs is
in favor of our architecture, which achieves higher
translation quality with less layers. In particular,
SR-NMT with 2 layers outperforms SRU NMT
with 3 layers by 1 BLEU point and also trains

7https://github.com/MycChiu/fast-LayerNorm-TF
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WMT16 En-Ro BLEU
SR-NMT 1L 24.74
SR-NMT 2L 26.41
SR-NMT 4L 28.81
SR-NMT 6L 29.04
SR-NMT 8L 28.70
GRU (Sennrich et al., 2016b)
GRU 1L+2L 28.1
Ensemble 28.2
Convolutional (Gehring et al., 2017)
ConvS2S 15L 30.02
Transformer (Gu et al., 2018)
NAT 29.79
Transformer 31.91

Table 3: Results on the test set of WMT16 En-Ro and com-
parison with the state of the art.

faster (Table 1). However, this comparison is per-
formed with implementations that are not opti-
mized for fast execution in GPU. A speed compar-
ison with optimized implementations could lead to
different results.

In the second part of Table 2 we report some
results from (Lei et al., 2017b) on the same bench-
mark. The different number of parameters is prob-
ably due to a different size of the vocabulary, in
fact the number of merge rules used is not reported
in the paper. Our LSTM baseline performs clearly
better then the one cited because of the straight-
forward improvements we implemented, i.e. the
use of input feeding (Luong et al., 2015), MLP
attention instead of general or dot attention, and
dropout in every layer. With this improvements,
our baseline with 2 layers obtains 1.4 BLEU scores
more than its counterpart using 5 layers. Moreover,
it also outperforms SRU with 10 layers by more
than 1 point. This result shows that our additions
are fundamental to have a competitive architecture
based on weakly recurrent units.
Figure 3 shows a comparison of the learning
curves of SR-NMT and SRU NMT both with 3 lay-
ers. We can easily observe that the convergence of
SR-NMT occurs at comparable speed but to a bet-
ter point and the validation perplexities of the two
models are very close to the training perplexities.
When we compare SR-NMT to GNMT (Table 2),
we can observe that SR-NMT with 8 layers per-
forms slightly better than GNMT, which in turn
uses many more parameters, as it uses 8 LSTM
layers with size 1024. Moreover, GNMT was

Figure 3: Perplexity against time for SR-NMT and SRU-
based NMT with 3 layers and the same optimization policy.
The convergence is achieved after a comparable number of
iterations, but SR-NMT achieves a better convergence point.

trained for 6 days on 96 Nvidia K80 GPUs, while
our model took the equivalent8 of 12 days on a sin-
gle K80 GPU.

Our best BLEU score, 25.04, is obtained with 9
layers. This is only 0.12 BLEU points below the
convolutional model that used 15 layers in both
encoder and decoder, and hidden sizes of at least
512. Finally, we notice that SR-NMT’s best perfor-
mance is still below that of the transformer model.
Future work will be devoted to deeper explore the
hyper-parameter space of our architecture and en-
hance it along the recent developments in (Chen et
al., 2018).

6.2 WMT16 En-Ro

The results for WMT16 En-Ro are listed in Ta-
ble 3. We obtain the highest score for this dataset
with 6 layers, which can be due to the smaller di-
mension of the dataset, for which we did not add
any form of regularization.

Our best SR-NMT system, which obtained a
BLEU score of 29.04, is 1 BLEU point lower than
ConvS2S, and almost 3 BLEU points lower than
the state of the art. Nonetheless, this score is al-
most 1 BLEU point better than the score obtained
by the winning system in WMT16 (Bojar et al.,
2016), showing that SR-NMT represent a viable
alternative to more complex RNNs.

8As our training currently works on single GPU, we could
only fit models up to 7 layers into a K80, hence the estimate.
Actually, models above 7 layers were trained on a V100 GPU.
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Model BLEU ∆

LNMA-SRU 4L 22.99 0
- LayerNorm 21.97 -1.02
- Multi Attention 21.57 -1.42
- Highway 20.85 -2.14
- Ln & MA 20.51 -2.48
- LN & highway / - /
- MA & highway 19.54 -3.45
- LN, MA & highway 18.39 -4.6

Table 4: Ablation experiments on SR-NMT with 4 layers.
BLEU scores are computed after one training stage. While
removing multi attention we still keep one attention model in
the last layer. The system without layer normalization and
highway connections failed to converge.

7 Ablation experiments

In this section, we evaluate the importance of our
enhancements to the original SRU unit, namely
multi-attention and layer normalization, and of the
highway connections, which were already present
in the original formulation of SRUs.

We take our SR-NMT model with 4 layers and
remove from it one component or a set of compo-
nents. All the combinations are reported. Results
refer to the WMT14 En-De task after performing
only one training stage. In other words, we did
not restart training after convergence as we did for
the systems reported in Table 2. As our previous
experiments already proved the superiority of SR-
NMT to LSTMs, the goal of this section is to un-
derstand whether all the proposed additions are im-
portant and to quantify their contributions.

From Table 4 we can observe that the removal
of highway connections causes the highest drop
in performance (−2.14 BLEU points), followed
by multi attention and then layer normalization.
Another important observation is the additivity of
the contributions from all the components, in fact
when two or three components are removed at
once, the drop in performance is roughly the sum
of the drops caused by the single components. Fi-
nally, the removal of layer normalization and high-
way connections, while keeping multi attention,
causes a gradient explosion that prevents the SR-
NMT system from converging.

8 Conclusions

In this paper we have presented a simple re-
current NMT architecture that enhances previ-
ous SRUs (Lei et al., 2017b) by adding elements

of other architectures, namely layer normaliza-
tion and multiple attentions. Our goal was to
explore the possibility to make weakly-recurrent
units competitive with LSTMs for NMT. We have
shown that our SR-NMT architecture is able to
outperform more complex LSTM NMT models on
two public benchmarks. In particular, SR-NMT
performed even better than the GNMT system,
while using a simpler optimization policy, a vanilla
beam search and a fraction of its computational re-
sources for training. Future work will be in the
direction of further enhancing SR-NMT by inte-
grating core components that seem to particularly
boost performance of the best non recurrent NMT
architectures.
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