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Abstract

This paper presents a case study in trans-
lating short image captions of the Visual
Genome dataset from English into Hindi
using out-of-domain data sets of varying
size. We experiment with three NMTmod-
els: the shallow and deep sequence-to-
sequence and the Transformermodel as im-
plemented in Marian toolkit. Phrase-based
Moses serves as the baseline.

The results indicate that the Transformer
model outperforms others in the large data
setting in a number of automatic met-
rics and manual evaluation, and it also
produces the fewest truncated sentences.
Transformer training is however very sen-
sitive to the hyperparameters, so it requires
more experimenting. The deep sequence-
to-sequencemodel producedmore flawless
outputs in the small data setting and it was
generally more stable, at the cost of more
training iterations.

1 Introduction

In recent years, neural machine translation (NMT)
systems have been gaining more popularity due
to their improved accuracy and even more flu-
ency compared with “classical” statistical ma-
chine translation systems such as phrase-basedMT
(PBMT), see e.g. the shared tasks of WMT and
IWSLT (Bojar et al., 2017; Cettolo et al., 2017).
The major advantages of NMT include the consid-
eration of the entire sentence, capturing similarity
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of words, and the capacity to learn complex rela-
tionships between languages. At the same time, it
has been observed that NMT is more sensitive to
the shortage of or noise in the parallel training data
(Koehn and Knowles, 2017).
Our goal is to create the Hindi version of Visual

Genome (Krishna et al., 2017).1

Hindi, with 260 million speakers, is the fourth
most widely spoken language on the planet (after
Chinese, Spanish and English). Hindi is a morpho-
logically rich language (MRL), with e.g. the gen-
der category being reflected in the forms of nouns,
verbs and also adjectives (Sreelekha S and Bhat-
tacharyya, 2017). The structural and morphologi-
cal differences between English and Hindi result in
translation difficulties (Tsarfaty et al., 2010).
Visual Genome is a dataset of images, captions

and relations. As such, it is potentially useful for
manyNLP and image processing applications. The
Hindi version would allow to exploit this dataset
e.g. to create Hindi image labellers or other practi-
cal tools.
The textual part of Visual Genome consists pri-

marily of short sentences or noun phrases that were
manually attached to rectangular regions in an in-
put image. In the current version, Visual Genome
contains 108K distinct images with 5.4 million
such labelled regions in total. On average, an im-
age is thus associated with 50 text segments. Text
segments can repeat across images and indeed,
when de-duplicated, the set of unique strings re-
duces to 3.15 million unique segments.
Even with this de-duplication, this set remains

too big to be translated manually. It is thus natu-
ral to attempt to translate this dataset automatically
and in this paper, we are trying to find the best base-

1http://visualgenome.org/

Pérez-Ortiz, Sánchez-Mart́ınez, Esplà-Gomis, Popović, Rico, Martins, Van den Bogaert, Forcada (eds.)
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line translation. In the future, we want to include
also information available in the context of each of
the labels: either the text descriptions of nearby re-
gions or directly the visual information in a form
of multi-modal translation (Matusov et al., 2017;
Calixto et al., 2012; Huang et al., 2016).
The paper is organized as follows. Section 2

reviews related work on neural MT and English-
Hindi translation. Section 3 describes our experi-
mental setting: data, models and their parameters.
Section 4 provides automatic and manual evalua-
tion of the translations and Section 5 discusses the
results in closer detail. We conclude in Section 6.

2 Related Work

Singh et al. (2017) have compared two neural ma-
chine translation models, convolutional sequence
to sequence (ConvS2S) and recurrent sequence to
sequence (RNNS2S) for English↔Hindi machine
translation task. They have used the IITB corpus
for training (see Section 3.1) and also for devel-
opment and test data. The RNNS2S model was
trained using Nematus (Sennrich et al., 2017) and
ConvS2S using Fairseq (Gehring et al., 2017), an
open source library developed by Facebook. In
their evaluation, ConvS2S was better when tar-
getting English (BLEU scores: RNNS2S: 11.55,
ConvS2S: 13.76) but RNNS2S was better when
targetting Hindi (BLEU scores: RNNS2S: 12.23,
ConvS2S: 11.73). As our experiment scope is lim-
ited to English to Hindi translation, we have not
tried the ConvS2S.
Wang et al. (2017) use the encoder-decoder

framework with attention (Bahdanau et al., 2015)
for their submission to the Workshop on Asian
Translation (WAT) 2017 shared task and observe
considerable gains for English-to-Hindi compared
to PBMT. Similarly to other works, they benefit
from subword units (Sennrich et al., 2016a) and
back-translation (Sennrich et al., 2016b), as well
as model ensembling.
Agrawal and Misra Sharma (2017) evaluate

English-Hindi translation quality using several
variants of RNN-based neural network architecture
and basic units (LSTMs, Hochreiter and Schmid-
huber, 1997, and GRUs, Cho et al., 2014b), in-
cluding the attentionmechanism byBahdanau et al.
(2015) and more layers in the encoder and decoder.
The bi-directional LSTM model with four layers
and attention performs best.
The early models of NMT have suffered from
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Figure 1: Overall experimental setting.

lower translation quality for long sentences, see
e.g. Cho et al. (2014a) and Bahdanau et al. (2015).
A recent experiment by Beyer et al. (2017) has
however suggested that NMT can perform worse
than PBMT also for short segments (insignifi-
cantly). It is thus natural to evaluate the effect in
our particular setting.
We note that monolingual data plays an impor-

tant role in boosting the performance of the trans-
lation in both PBMT (Brants et al., 2007; Bojar and
Tamchyna, 2011) andNMT (Sennrich et al., 2016b;
Domhan and Hieber, 2017). We leave these exper-
iments for future work because we would first need
to find or select Hindi texts closely matching to the
domain of Visual Genome texts.

3 Experiments

The overall framework of our work is shown in
Figure 1. The targeted dataset is English text de-
scriptions fromVisual Genome but no similar or re-
lated data is available in Hindi. So far, we thus used
Visual Genome only to select the development and
the test set.
We experimented with two parallel corpora as

our training data, HindEnCorp and IITB Corpus
(see Section 3.1), three NMT models and the
PBMT baseline (Section 3.2).
We used the experiment management tool Eman

(Bojar and Tamchyna, 2013)2 for organizing and
running the experiments.

2http://ufal.mff.cuni.cz/eman
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Set #Sentences #Tokens
En Hi

Train (HindEnCorp) 273.9k 3.8M 5.6M
Train (IITB) 1492.8k 20.8M 31.4M
Dev (Visual Genome) 898 4519 6219
Test (Visual Genome) 1000 4909 6918

Table 1: Statistics of our data.

3.1 Dataset Description
This section describes the processing and usage
of the training and development data. We have
used HindEnCorp (Bojar et al., 2014) as the train-
ing dataset which contains 274k parallel sen-
tences. Additionally, we have explored the very re-
cent “IIT Bombay English-Hindi Parallel Corpus”
(Kunchukuttan et al., 2018) which is supposedly
the largest publicly available English-Hindi paral-
lel corpus. This corpus contain 1.49 million paral-
lel segments and it includes HindEnCorp.
The development and test sentences were ex-

tracted from the Visual Genome. The original
dataset contains images and their region annota-
tions and several other formally captured types of
information (objects, attributes, relationships, re-
gion graphs, scene graphs and question answer
pairs). We built our dataset by extracting only the
region descriptions, which are generally short sen-
tences or phrases. We selected the development
and test segments randomly and prepared the corre-
sponding Hindi translation by manually correcting
Google Translate outputs.
The training and test sets sizes are shown in Ta-

ble 1. Note that the token counts considerably dif-
fer from those reported in the corpus descriptions.
Here we report the token counts as obtained by the
Moses tokenizer and used in all our experiments.

3.2 MT Models Tested
One of the current most efficient NMT toolkits is
Marian3 (Junczys-Dowmunt et al., 2016), which
is a pure C++ implementation of several popular
NMT models. All our experiments thus use Mar-
ian models.

3.2.1 Marian’s nematus Model (Bi-RNN)
The common baseline NMT architecture is

the (shallow) attentional encoder-decoder of Bah-
danau et al. (2015). A particularly popular imple-
mentation of this model is available in the Nematus
toolkit (Sennrich et al., 2017),4 which adds some
3http://github.com/marian-nmt/marian
4http://github.com/EdinburghNLP/nematus

Parameter Bi-RNN S2S Transformer
beam-size 12 12 12
dec-cell gru lstm –
dec-cell-base-depth 2 4 –
dec-cell-high-depth 1 2 –
dec-depth 1 4 6
decay-inv – – 16000
dim-emb 512 512 512
dim-rnn 1024 1024 1024
dropout-rnn 0.2 0.2 –
dropout-src 0.1 0.1 –
dropout-trg 0.1 0.1 –
early-stopping 10 – –
enc-cell gru lstm –
enc-cell-depth 1 2 –
enc-depth 1 4 6
enc-type bidirectional alternating –
exponential-smoothing – 0.0001 –
heads – – 8
label-smoothing – – 0.1
learning-rate 0.0001 0.0001 0.0003
max-length 50 50 100
normalize – – 0.6
optimizer adam adam adam
transformer-dim-ffn – – 2048
transformer-dropout – – 0.1
transformer-dropout-attention – – 0
transformer-postprocess – – dhn
warm-up – – 16000

Table 2: Model configurations.

implementation differences such as a different ini-
tial hidden state, a different RNN cell and several
others.
Marian implements both the training and in-

ference with the Nematus (Sennrich et al., 2017)
model and in fact, it can load models trained by the
original Nematus.
We call this setup “Bi-RNN” in the following

and use it only in shallow (depth 1) setting.

3.2.2 Marian’s Sequence-to-Sequence (s2s)
Model

A more advanced variation of the RNN-based
model allows to use deeper layers in both decoder
and encoder and it also differs from the original
Nematus model in several features, such as a dif-
ferent layer normalization (Sennrich et al., 2017;
Junczys-Dowmunt and Grundkiewicz, 2017).
We denote this model “S2S” in the following and

use it only in the deep (depth 4) setting.

3.2.3 Marian’s transformer Model
The Transformer model (Vaswani et al., 2017)

has been recently proposed to avoid the expensive
training of RNNs, relying on the attention mecha-
nism.
As explored by Popel and Bojar (2018) with the
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Figure 2: Learning curves in terms of BLEU on dev set. The big black dots indicate which iteration was used for test set
translation and evaluation.

original Google implementation,5 the model can
be more difficult to train but it will likely outper-
form other architectures in both training time and
final translation quality. Indeed, we needed to try
9 different configuration settings for Transformer
before we got any reasonable performance, com-
pared to just 3 for S2S and 1 for Bi-RNN.
Marian’s implementation should be fully com-

patible with the original Google one.
The configuration parameters used for training

of the models are shown in Table 2.

3.2.4 Common Settings
In all NMT experiments, we used the same BPE

(Sennrich et al., 2016a), with 30k merges, joint for
English and Hindi and extracted from HindEnCorp
only. We also tried to extract the BPE from the re-
spective training corpus (i.e. IITB for IITB mod-
els) but the performance was lower, perhaps due to
domain differences between the corpora. The Hin-
dEnCorp BPEs are thus used in all experiments re-
ported here.

3.2.5 Moses PBMT Baseline
For the purposes of comparison, we also train

Moses (Koehn et al., 2007) phrase-based MT sys-
tem with a 5-gram LM and a lexicalized reorder-
ing model, trained with the standard MERT opti-
mization towards BLEU. The alignment is based
on lowercase tokens, stemmed to the first 4 char-
acters only.

4 Results

Figure 2 presents the learning curves for all the
models evaluated on the development set using the
5http://github.com/tensorflow/tensor2tensor

Bi-RNN S2S Transf. PBMT

H
in
dE

nC
or
p BLEU 20.68 26.45 23.91 20.61

chrF3 32.30 39.52 36.36 36.49
nCDER 34.04 40.91 38.26 32.71
nCharacTER 12.27 18.47 23.12 29.05
nPER 41.76 49.05 47.01 50.40
nTER 29.63 35.70 33.52 24.78

II
TB

C
or
pu
s BLEU 31.78 32.81 38.31 25.06

chrF3 42.63 44.50 51.08 43.09
nCDER 44.49 44.91 51.78 37.54
nCharacTER -14.76 -47.00 25.07 37.55
nPER 51.86 52.04 59.60 55.17
nTER 40.62 41.44 49.05 32.76

Table 3: Results on the test set, multiplied by 100. Best model
according to each automatic metric in bold. Metrics with the
prefix “n” were flipped (100 − score) to make better scores
higher. The negative numbers for nCharacTER happen when
the original CharacTER score is over 1.

BLEU score (Papineni et al., 2002). (PBMT train-
ing is displayed in terms of MERT iterations on the
secondary x axis.)
For NMT, we validated the model every 10000

iterations and ran the training until the cross-
entropy has not improved for 10 consecutive val-
idations. For each model, we selected the iteration
where the highest BLEU score was reached and
translated the test set with this model.

4.1 Automatic Evaluation

Table 3 provides automatic scores of the models in
several metrics (Papineni et al., 2002; Snover et al.,
2006; Leusch and Ney, 2008; Popović, 2015;Wang
et al., 2016).6 We see that on the smaller HindEn-
6Note that the exact scores are heavily dependent on the to-
kenization. We collect outputs from all our system after
detokenization and tokenize if needed by the metric (chrF3
and CharacTER do not expect tokenized text). We report
the scores when Moses tokenizer was used. Using e.g.
the Hindi tokenization from IndicNLP, http://github.com/
anoopkunchukuttan/indic_nlp_library, leads to sub-
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Corp, S2S performs best except in CharacTER and
PERwhere the outputs of PBMT score best. On the
larger IITB Corpus, Transformer wins in all met-
rics except again CharacTER. We suspect that the
different evaluation by CharacTER could be an ar-
tifact of the Devanagari script used in Hindi.
PER, position-independent error-rate, reflects

the overlap of exact word forms used in the ref-
erence and the hypothesis, suggesting that PBMT
performs reasonably well in terms of preserving
words, although the fluency is probably worse.
It should be noted that the automatic scores can

be affected by the fact that our test set was created
by manual revision of Google Translate outputs.
The underlying model of Google Translate is how-
ever unknown. Also, we have only one reference
translation and it is well known that with more ref-
erence translations, automatic evaluations aremore
reliable (Finch et al., 2004; Bojar et al., 2013).

4.2 Manual Evaluation
To validate the automatic scoring, we manually an-
notated 100 randomly selected segments as trans-
lated by the NMT models.7
In this annotation, each annotated segment gets

exactly one label from the following set:

Flawless for translations without any error (type-
setting issues with diacritic marks due to dif-
ferent tokenization are ignored),

Good for translations which are generally OK and
complete but need a small correction,

Partly Correct for cases where a part of the seg-
ment is correct but some words are mis-
translated,

Ambiguity for segments where the MT system
“misunderstood” a word’s meaning, and

Incomplete for segments that runwell but stop too
early, missing some content words. This cat-
egory also includes the relatively rare cases
where the NMT model produced just a single
word, unrelated to the source.

The results are summarized in Figure 3.

stantially lower scores, e.g. BLEU of 7 instead of 20. For-
tunately, these BLEU scores correlate very well (Pearson of
0.94) with our scores.
7We excluded PBMT from this annotation because its BLEU
scores were low; we are now reconsidering this decision given
the good performance in PER.

(a) HindEnCorp-trained models

(b) IITB-trained models

Figure 3: Manual evaluation summary.

The manual annotation generally confirms the
automatic scores. On HindEnCorp, S2S has the
highest number of Flawless segments and Bi-RNN
performs worst, having the majority of outputs
only Partly Correct and suffering most from Am-
biguity.
On IITB, the performance of all the models is

generally much better, with 40–60 of the 100 anno-
tated segments falling into the Flawless category.
Transformer is a clear winner here and S2S suffers
from surprisingly many Incomplete segments.
Some translation samples are shown in Figure 4.

5 Analysis and Discussion

We assumed that PBMT may perform better on
short segments. In order to test this assumption, we
divided the 1000 test segments into 5 groups based
on the source segment length. Group boundaries
were chosen to achieve reasonably balance distri-
bution and at least a minimal size for automatic
scoring:

Source length: 1–3 4 5 6 7–12
Segment count: 73 380 282 165 100

Figure 5 plots BLEU scores evaluated on each
group of segments separately. We see that our as-
sumption does not hold and that there is no clear
tendency in translation quality based on source sen-
tence length. In the small data setting (HindEn-
Corp), PBMT scores well sentences of length 4 and
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Flawless:
A car on a street
सडक पर एक कार

Gloss: A car on a street
A white and yellow passenger car
एक सफेद और पीला यात ◌् र कार

Gloss: A white and yellow passenger car
White part of the chair
कुर ◌् सी का सफेद भाग

Gloss: White part of the Chair
Partly Correct:

A man wearing white shorts
एक आदमी सफेद शॉर ◌् ट पहनना

Gloss: A man put on white short
(output does not convey the intended

meaning in the target language)
Dog in a lake

इस झील म कुत ◌् ते
Gloss: Dogs in this lake

(grammar error: dog vs. dogs)
Ambiguity:

Faucet is above sink
फेसबुक स�क से ऊपर है

Gloss: Facebook is above sink
(bad translation of the word “Faucet’)

Green bean in soup
आत ◌् मा म हरा

Gloss: Spirit in green
(mis-translated words “bean”, and “soup”)

Figure 4: Sample segment translations and their manual clas-
sification.

then on sentences over 7 words. In other cases, S2S
wins. With the IITB training corpus, Transformer
wins and PBMT loses across all lengths.
A generally interesting property of NMT is its

ability to correctly predict the sentence length (Shi
et al., 2016). We take a look at this by considering
both the relation of our candidate translations with
the source and with the reference.
Figure 6 plots the length of the translation for in-

dividual source segments sorted by length. We see
that the target length varies a lot across segments
and also different NMT models. In general, out-
puts are longer than sources but the length of the
source is not really followed by any of the models.
We observed on the HindEnCorp training data

that some of the NMT models tended to cut off
sentences too short in early iterations. To exam-
ine this, we checked the difference in length be-

(a) HindEnCorp-trained models

(b) IITB-trained models

Figure 5: Translation quality for groups of segments based
on their source length.

Figure 6: Source and candidate translation lengths for indi-
vidual segments in the subset of 100 manually-evaluated seg-
ments. Segments are sorted by source length. The models
were trained on the IITB corpus.

tween the candidate and the reference throughout
the iterations. The distribution of length differ-
ences was however not skewed in any way and
the only observable pattern was that the differences
get smaller as the training progresses. We plot the
differences for the converged runs over the whole
1000 segments in the test set in Figure 7. We see
that all the NMT models are very similar, produc-
ing output slightly longer (peak at +2) than the
reference. The PBMT is optimized well and the
peak is located at zero difference between the can-
didate and reference length. The interesting pattern
in NMT outputs of slightly fewer segments with
odd differences (+1, +3 and +5) has still to be ex-
plained.

6 Conclusion

We have applied the state-of-the-art neural ma-
chine translation models and the phrase-based

234



Figure 7: Segment length difference (candidate vs reference)
of the IITB-trained models. The positive numbers indicate
that candidate is longer than the reference.

baseline to English-to-Hindi translation. Our tar-
get domain were relatively short segments appear-
ing in descriptions of image regions in the Visual
Genome.
The results indicate that with smaller data (274k

parallel segments, 3.8M English tokens), the deep
sequence-to-sequence attentional model is the best
choice, although the PBMT baseline seemed to
perform well in two of the tested automatic met-
rics, CharacTER and PER. With large parallel data
available, Transformer should be preferred and all
NMT models clearly outperform PBMT. We have
not yet explored the effect of adding monolingual
data.
A deeper analysis has not revealed any differ-

ence in performance for shorter or longer segments,
but the manual annotation suggested that the per-
formance of NMT models varies across individual
segments. The overall performance is thus perhaps
too crude and it would be suboptimal to decide for
a single model.
In the future, we will focus on the possibilities

of multi-modal translation (Matusov et al., 2017;
Calixto et al., 2012; Huang et al., 2016) to im-
prove translation quality using the Visual Genome
images or other contextual information available.
Our ultimate plan is to release a machine-translated
Hindi version of Visual Genome.
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