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Abstract

The requirement for neural machine trans-
lation (NMT) models to use fixed-size in-
put and output vocabularies plays an im-
portant role for their accuracy and gener-
alization capability. The conventional ap-
proach to cope with this limitation is per-
forming translation based on a vocabulary
of sub-word units that are predicted us-
ing statistical word segmentation methods.
However, these methods have recently
shown to be prone to morphological errors,
which lead to inaccurate translations. In
this paper, we extend the source-language
embedding layer of the NMT model with
a bi-directional recurrent neural network
that generates compositional representa-
tions of the source words from embeddings
of character n-grams. Our model con-
sistently outperforms conventional NMT
with sub-word units on four translation di-
rections with varying degrees of morpho-
logical complexity and data sparseness on
the source side.

1 Introduction

Neural machine translation (NMT) has improved
the state-of-the-art performance in machine trans-
lation of many languages (Bentivogli et al., 2016;
Junczys-Dowmunt et al., 2016). However, current
NMT systems still suffer from poor performance
in translating infrequent or unseen words, limiting
their deployment for translating low-resource and
morphologically-rich languages. This problem is
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mainly caused by the fundamental design of the
model, which requires observing many examples
of a word until its input representation (i.e. embed-
ding) becomes effective. Moreover, the convention
of limiting the input and output vocabularies to few
tens of thousands of words to control the compu-
tational complexity of the model leads to coverage
issues. In fact, a word can be translated only if an
exact match of it is found in the vocabulary.

To cope with this well-known problem, several
studies have suggested to redefine a new model
vocabulary in terms of the interior orthographic
units compounding the words, such as charac-
ter n-grams (Costa-Jussa and Fonollosa, 2016;
Lee et al., 2016; Luong and Manning, 2016) or
statistically-learned sub-word units (Sennrich et
al., 2016; Wu et al., 2016; Ataman et al., 2017).
In spite of providing an ideal open vocabulary so-
lution, the former set of approaches mostly failed
to achieve competitive results. This might be re-
lated to the semantic ambiguity caused by solely
relying on embeddings of character n-grams which
are generally learned by disregarding any lexical
context, hence, morphology. In fact, building a vo-
cabulary of sub-word units for training the NMT
model and performing translation based on sub-
word embeddings has now become the prominent
approach. However, many studies have shown that
statistical word segmentation methods can break
the morphological structure of words, leading to
loss of semantic and syntactic information in the
sentence and, consequently, inaccurate translations
(Niehues et al., 2016; Ataman et al., 2017; Pinnis
et al., 2017; Huck et al., 2017; Tamchyna et al.,
2017). Principally, these solutions are unsuper-
vised methods and can never reach the accuracy
of morphological analyzers, which, on the other
hand, are not available in every language and can-
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not provide sufficiently compact vocabularies for
the large training sets typically used in NMT.

In order to increase the accuracy in translat-
ing rare and unseen words with NMT, in this pa-
per, we propose to learn information about the
source language morphology directly from the
bilingual lexical context and use this information
to compose word representations from a minimal
set of input symbols. In addition to improving
the quality of input word representations, our ap-
proach also aims at eliminating the necessity of
using a separate and sub-optimal word segmenta-
tion step on the source language. The approach of
learning word embeddings compositionally has re-
cently been applied in language modeling and has
found to be promising (Vania and Lopez, 2017).
In this study, which extends (Ataman and Fed-
erico, 2018b)1, we present and evaluate an ap-
proach for improving the source language input
representations in NMT by augmenting the embed-
ding layer with a bi-directional recurrent neural
network (bi-RNN), which can learn compositional
input word representations from embeddings of
character n-grams. We compare our approach
against conventional embedding-based represen-
tations of sub-word units learned from statistical
word segmentation methods in official evaluation
benchmarks, under low to medium resource con-
ditions, by pairing English with four languages:
Czech, German, Italian and Turkish, where each
language represents a distinct morphological ty-
pology. The experimental findings show that our
compositional input representations provide sig-
nificantly and consistently better translation qual-
ity for rare and unknown words than the prominent
sub-word embedding based NMT approaches in all
language directions.

2 Neural Machine Translation

The NMT model we use in this paper (Sutskever
et al., 2014) is based on the idea of predicting the
conditional probability of translating a source sen-
tence x = (x1, x2, . . . xm) of length m, into a tar-
get sentence y = (y1, y2, . . . yj . . . yl) of length l,

1This paper extends (Ataman and Federico, 2018b) in four
ways: with a new and more efficient implementation of the
model, with experiments with deeper and wider NMT net-
works, with results on new translation directions and under
significantly larger training data conditions, and by reporting
results on sentences containing rare words.

using the decomposition

p(y|x) =
l∏

j=1

p(yj |yj−1, .., y0, xm, .., x1) (1)

The model is trained by maximizing the log-
likelihood of a training dataset consisting of paral-
lel sentence pairs in two languages using stochas-
tic gradient descent methods (Bottou, 2010) and
the backpropagation through time (Werbos, 1990)
algorithm .

The inputs of the model are one-hot vectors,
which have a single bit set to 1 to identify a
given word in the vocabulary. Each word vector
is mapped to an embedding, a continuous repre-
sentation of the word in a lower-dimensional but
more dense space. Then, the encoder, a stacked
bi-RNN, learns a distributed representation of the
source sentence x in the form of m dense vec-
tors corresponding to its hidden states. The output
states of a stacked RNN encoder with L layers is
computed using the following equations:

hki = RNN(hk−1
i , hki−1) (2)

where h0i is the embedding of the input word i
(l = 1..L and i = 1..m). The output of the
encoder is fed to the decoder, a unidirectional
stacked RNN, in order to predict the target sen-
tence y word by word. Each target word yj is pre-
dicted by sampling from a word distribution com-
puted from the previous target word yj−1, the pre-
vious hidden state of the decoder, and the source-
context vector, which is a linear combination of the
encoder hidden states. The weights of each hidden
state are dynamically computed by the attention
model (Luong et al., 2015) on the basis of the cur-
rent decoder hidden state ht and the corresponding
encoder hidden states h̄s. During the generation of
each target word yj , its probability is normalized
via a softmax function.

The number of parameters used by the model are
mainly defined by the sizes of the source and tar-
get vocabularies, which requires to use fixed-size
vocabularies in order to control the computational
complexity. However, this limitation creates an
important bottleneck when translating from and to
low-resource and morphologically-rich languages,
due to the sparseness of the lexical distribution.

3 Related Work

In order to improve the translation accuracy of
rare words in NMT, previous studies have pro-
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posed several approaches which share the repre-
sentations of word pieces among different words.
These approaches include either engineering new
NMT models that efficiently work at the character
level, or performing a pre-processing step where
words are segmented into smaller units using su-
pervised or statistical tools before computing the
NMT vocabulary.

3.1 Character-level NMT

The first set of statistical approaches that attempted
to overcome the fixed-size vocabulary problem in
NMT is based on the idea of constructing the
translation model directly at the level of char-
acters. Most of these approaches are based on
the character-level language model of Kim et al.
(2016), which uses convolutional and highway
networks for transforming character embeddings
into feature representations of sentence segments.
Costa-Jussa and Fonollosa (2016) applied this ap-
proach to NMT for learning the source language
input representations with a convolutional neu-
ral network while still maintaining the translation
model as the same bi-RNN based encoder-decoder
network (2016). Lee et al. (2016) further extended
this approach to achieve fully character-level NMT
by changing the decoder with a character-based
one (Chung et al., 2016). Another approach
that also implements fully character-level NMT
based on convolutional neural networks is ByteNet
(Kalchbrenner et al., 2016), which performs trans-
lation in linear time steps with respect to the source
sentence length.

The main problem with these approaches is that
they generally disregard lexical boundaries while
learning distributed representations of the input
units. Nevertheless, it is controversial whether se-
mantics, and therefore morphology, can be mod-
eled without maintaining a context defined at the
lexical level. An additional drawback related to
these methods resides in the increased sequence
lengths caused by processing the sentences as se-
quences of characters, which also augments the
computational cost despite the reduced complex-
ity in the softmax layer. Moreover, using solely
convolution cannot capture information about the
relative position of each interior unit inside the
word, which could provide important cues about
their morphological roles. An earlier approach to
character-level NMT was developed by Ling et al.
(2015), which instead learns compositional input

representations of words using two additional lay-
ers of bi-LSTMs in the source and target sides of
the NMT model. The decoding is implemented us-
ing a softmax over the character vocabulary in the
target language. Although this approach allows to
maintain NMT at the lexical level, the overall com-
putational complexity of the resulting model be-
comes too high to be deployed in practical tasks.

3.2 Unsupervised Word Segmentation

A more straight-forward and faster method to cope
with the high computational complexity in NMT
is to apply a statistical word segmentation method
as a data pre-processing step before training the
model. This step reduces the size of the corpus vo-
cabulary to a maximum number of sub-word units.
Although the original NMT model was designed
to translate sequences of words, it is now com-
mon to perform NMT at the sub-lexical level based
on input representations learned from a vocabulary
of sub-word units. Indeed, learning embeddings
of sub-word units which are more frequently ob-
served in different lexical contexts allows to reduce
the data sparseness and improve the quality of in-
put representations (Ataman and Federico, 2018a).
In this paper, we discuss two of such approaches:
Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
and Linguistically-Motivated Vocabulary Reduc-
tion (LMVR) (Ataman et al., 2017).

Byte-Pair Encoding is originally a data com-
pression algorithm which aims to minimize the
length of a sequence of bytes by finding the most
frequent consecutive byte pairs and encoding them
using the unused byte values (Gage, 1994). This
algorithm was adapted to NMT by Sennrich et al.
(2016) for achieving open vocabulary translation.
In the modified algorithm, the most frequent char-
acter sequences are iteratively merged for a pre-
determined number of times in order to generate
a fixed-size vocabulary of sub-word units. This
purely statistical method is based on the hypoth-
esis that many types of words can be translated
when segmented into smaller units, such as named
entities and loanwords. However, by solely re-
lying on corpus frequency, one cannot provide a
sufficiently compact vocabulary that can general-
ize among the inflected surface forms commonly
observed in morphologically-rich languages (Ata-
man et al., 2017; Huck et al., 2017; Tamchyna et
al., 2017). Moreover, many studies have showed
that splitting words into sub-word units at posi-
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tions that disregard the morpheme boundaries can
lead to semantically ambiguous sub-word units,
and consequently, inaccurate translations (Niehues
et al., 2016; Ataman et al., 2017; Pinnis et al.,
2017).

Linguistically-Motivated Vocabulary Reduc-
tion also constitutes a pre-processing step to
NMT where an unsupervised morphology learn-
ing algorithm learns the optimal way of segment-
ing words into morphs and later uses the lexicon
of morphs to build a sub-word vocabulary for the
translation engine. The method is an extension of
Morfessor FlatCat (Grönroos et al., 2014), where
a Hidden Markov Model (HMM) models the com-
position of a word based on the transitions between
different morphs and their morphological cate-
gories (i.e. prefix, stem or suffix). The category-
based HMM is essential for a linguistically moti-
vated segmentation, as words are only split con-
sidering the possible categories of the morphs and
not at positions which may break the morpholog-
ical structure or generate semantically ambiguous
sub-word units. Ataman et al. (2017) have modi-
fied this method in order to optimize the morphol-
ogy model with a constraint on the output vocabu-
lary size, allowing it to be adopted as a vocabulary
reduction method for NMT. By manipulating reg-
ularities in morphological transformations of the
concatenating nature, LMVR aids to improve the
NMT of languages with agglutinative or templatic
morphology. However, it does not yield signif-
icant improvements in fusional languages where
the boundaries of morphemes inside the words are
not transparent (Ataman and Federico, 2018a).

3.3 Morphological Analysis

In contrast to statistical approaches, few studies
have opted to use supervised morphological analy-
sis tools in order to reduce data sparseness in NMT.
For instance, Sanchez and Toral (2016) have used
a supervised morphological segmentation tool for
English–Finnish NMT in order to separate words
into root and inflection boundaries, whereas Huck
and colleagues (2017) suggested to perform NMT
based on a vocabulary of morphological features
predicted by a morphological analyzer. While such
methods aid in predicting a more compact NMT
vocabulary in terms of root and affixes, they can-
not reduce the vocabulary of a given text to fit any
vocabulary size, which obliges one to further re-
duce the vocabulary using an unsupervised word

segmentation method. Moreover, morphological
analyzers are language-specific tools and as such
they cannot provide general solutions to machine
translation.

4 Learning Compositional Input
Representations via bi-RNNs

One drawback of using statistical word segmen-
tation methods for vocabulary prediction in NMT
is that these methods constitute a pre-processing
step to NMT, and hence they are not optimized
for the translation task. Moreover, as given in
Figure 1a, transforming sentences into sequences
of sub-words leads to distributing the probability
of a source word among multiple tokens, thus,
increases the complexity of the alignment task
performed by the attention model. In order to
improve the accuracy in translating rare words
in NMT, instead, we propose to perform NMT
using word representations learned composition-
ally from smaller orthographic symbols inside the
words, such as character n-grams, that can easily
fit in the model vocabulary. This composition is
essentially a function which can establish a map-
ping between combinations of orthographic units
and lexical meaning, that is learned using the bilin-
gual context, so that it can produce representations
that are optimized for machine translation.

In our model (Figure 1b), the one-hot vectors
retrieve the corresponding source embeddings for
every word and feed them to an additional com-
position layer, which computes the final represen-
tations that are input to the encoder. For learning
the mapping between the sublexical units and the
lexical context, we employ a bi-RNN. Hence, by
encoding the context of each interior unit inside
the word, we believe that the network be able to
capture important cues about their functional role,
i.e. semantic or syntactic contribution to the word
meaning. We implement the network using GRUs
(Cho et al., 2014), which have shown compara-
ble performance to LSTM units (Hochreiter and
Schmidhuber, 1997) while performing faster com-
putation. As a minimal set of input symbols re-
quired to cope with contextual ambiguities, and at
the same time optimize the size of the NMT vo-
cabulary, we opt to use intersecting sequences of
character trigrams, as recently suggested by Va-
nia and Lopez (2017). Our preliminary experi-
ments (Ataman and Federico, 2018b) also con-
firmed the stand-alone sufficiency of character tri-
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(a) Input: sub-word embeddings. (b) Input: word representations built from char trigrams.

Figure 1: NMT of the Turkish sentence Eve geldim (I came home) using different input representations.

grams as fundamental units in the compositional
NMT model.

Given a bi-RNN with a forward (f ) and back-
ward (b) layer, the input representation w of a to-
ken of t characters is computed from the hidden
states hf

t and h0
b , i.e. the final outputs of the for-

ward and backward RNNs, as follows:

w = Wfh
t
f + Wbh

0
b + b (3)

where Wf and Wb are weight matrices and b
is a bias vector (Ling et al., 2015). These param-
eters are jointly learned together with the internal
parameters of the GRUs and the input token em-
bedding matrix to minimize the cost of the overall
network while training the NMT model. For an in-
put of m tokens, the computational complexity of
the network is increased by O(Ktmaxm), where K
is the average cost of one bi-RNN layer and tmax

is the maximum number of symbols per word.

5 Experiments

In order to evaluate our approach in NMT, we set
up an evaluation benchmark which models NMT
from four languages: Czech (CS), German (DE),
Italian (IT) and Turkish (TR) into English (EN),
where each input language represents a different
lexical distribution reflected by its morphologi-
cal characteristics, simulating conditions ranging
from the low-resource and high sparseness (Turk-
ish) to the high-resource and low sparseness (Ital-
ian) cases.

For training the Czech–English and German–
English NMT models, we use the available data
sets from the WMT2 (Bojar et al., 2017) shared
task on machine translation of news, which con-
sist of Europarl (Koehn, 2005), Commoncrawl

2The First Conference on Machine Translation

and News Commentary (Tiedemann, 2009). For
achieving a comparable size of training data, we
reduce the training set in German–English us-
ing the Invitation Model (Cuong and Simaan,
2014). We evaluate these models on the offi-
cial test sets from 2016. Due to the lack of
sufficient amount of news domain data, for the
Italian–English and Turkish–English directions,
we build generic NMT systems using data col-
lected from TED Talks (Cettolo et al., 2012), EU
Bookshop (Skadins et al., 2014), Global Voices,
Gnome, Tatoeba, Ubuntu (Tiedemann, 2012),
KDE4 (Tiedemann, 2009), Open Subtitles (Lison
and Tiedemann, 2016) and SETIMES (Tyers and
Alperen, 2010), and reduce the size of the train-
ing data for having comparable numbers of tokens
(Italian) and types (Turkish) with the other lan-
guages. These models are evaluated on the official
test sets from the evaluation campaign of IWSLT3

(Cettolo et al., 2017). The morphological charac-
teristics of the languages used in our study are pre-
sented in Table 1, while the statistics of the data
sets used in our experiments can be seen in Tables
2 and 3.

We perform NMT by keeping the segmentation

3The International Workshop on Spoken Language Transla-
tion with shared tasks organized between 2003-2017.

Language Morphological Morphological
Typology Complexity

Italian Fusional Low
German Fusional Medium
Czech Fusional, High

Agglutinative
Turkish Agglutinative High

Table 1: The evaluated languages in our study along with
their morphological characteristics.
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Language # sentences (K) # tokens (M) # types (K)
IT-EN 785 21(IT) - 22(EN) 152(IT) - 106(EN)
DE-EN 992 19(DE) - 18(EN) 501(DE) - 261(EN)
CS-EN 965 22(CS) - 25(EN) 385(CS) - 204(EN)
TR-EN 434 6(TR) - 8(EN) 373(TR) - 135(EN)

Table 2: Training sets. (M: Million, K: Thousand.)

Language Data sets # sentences (K) # tokens (K)
IT-EN Dev dev2010 & test2010 3,5 74(IT) - 79(EN)

Test test2011 & test2012 3,2 55(IT) - 60(EN)
DE-EN Dev test2015 2,2 44(DE) - 46(EN)

Test test2016 3,0 62(DE) - 65(EN)
CS-EN Dev test2015 2,7 46(CS) - 54(EN)

Test test2016 3,0 57(CS) - 65(EN)
TR-EN Dev dev2010 & test2010 2,4 34(TR) - 47(EN)

Test test2011 & test2012 2,7 39(TR) - 53(EN)

Table 3: Development and Testing Sets. All data set are official evaluation sets from WMT (Czech and German) and IWSLT
(Italian and Turkish). (M: Million, K: Thousand.)

on the English side constant and applying different
open vocabulary NMT approaches to the input lan-
guages. We segment the English side with LMVR
as it provides a segmentation that is more consis-
tent with the morpheme boundaries (Ataman and
Federico, 2018b).

The compositional bi-RNN is implemented in
PyTorch (Paszke et al., 2017) and integrated into
the OpenNMT-py toolkit (Klein et al., 2017). The
simple NMT model constitutes the baseline in our
study and performs translation directly at the level
of sub-word units, using a two-layer encoder based
on Stacked GRUs, a two-layer GRU decoder, in-
put feeding and the general global attention mech-
anism (Luong et al., 2015). For segmenting the
words in the source side, we chose to use BPE for
the fusional languages (Czech, German and Ital-
ian), whereas in Turkish we use LMVR, as sug-
gested in (Ataman and Federico, 2018a). The
compositional model, on the other hand, performs
NMT with input representations composed from a
vocabulary of character trigrams. All the models
use an embedding and GRUs with size 512. In or-
der to achieve a fair comparison, we use a one-
layer encoder for the compositional model, which
allows the two models to have comparable number
of parameters, whereas we use the same settings
for the remaining network properties and hyper-
parameters. All models are trained using the Adam
optimizer (Kingma and Ba, 2015) with an initial

learning rate of 0.0002 and default values for the
other hyper-parameters. We clip the gradient norm
at 1.0 (Pascanu et al., 2013) and set the dropout at
0.1 after hyper-parameter tuning. All models are
trained with a model vocabulary of 30,000 units.
The compositional model uses a trigram vocab-
ulary of the same size whereas the segmentation
methods (BPE and LMVR) are trained to fit in this
exact vocabulary limit. We evaluate the accuracy
of each model output using the (case-sensitive)
BLEU (Papineni et al., 2002), TER (Snover et al.,
2006) and chrF (Popovic, 2015) metrics. Signifi-
cance tests are computed only for BLEU with Mul-
teval (Clark et al., 2011).

6 Results and Discussion

The performance of NMT models in translating
each language using different types of encoder in-
put representations can be seen in Table 4. The re-
sults show that the compositional model achieves
the best translation accuracy in translation of all
morphologically-rich languages. The overall im-
provements obtained with this model over the best
performing simple model are 0.77 BLEU points
in German, 0.74 BLEU points in Czech and 0.11
BLEU points in Turkish to English translation di-
rections. The improvements are more evident for
Turkish in terms of other evaluation metrics, where
the compositional model improves the translation
accuracy by 0.016 TER and 0.009 chrF points. In
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Language Model BLEU TER chrF
Direction

IT-EN Simple (BPE) 29.02 0.501 0.5328
Compositional 28.66 0.506 0.5293

DE-EN Simple (BPE) 20.46 0.591 0.4544
Compositional 21.23 0.585 0.4537

CS-EN Simple (BPE) 19.59 0.615 0.4724
Compositional 20.33 0.614 0.4780

TR-EN Simple (LMVR) 23.02 0.585 0.4613
Compositional 23.13 0.569 0.4703

Table 4: Experiment Results. Best scores for each translation direction are in bold font. All improvements over the baseline
are statistically significant (p-value < 0.01).

Italian to English translation direction, the perfor-
mance of the simple model is higher than the com-
positional model by 0.36 BLEU, 0.005 TER and
0.0035 chrF points.

The better performance of the compositional
model in translating German, Czech and Turkish
suggests that our approach is beneficial in elim-
inating the morphological errors caused by seg-
mentation in languages with different morpholog-
ical typologies. The improvements are highest for
Czech and German, both of which have a fusional
morphology of medium to high complexity, and
the source language vocabulary of the training data
ranges from around 400,000 to 500,000 types of
words, indicating a high level of lexical sparseness.
At a comparable vocabulary size, the improve-
ments are generally lower in Turkish to English
translation direction, where the input language has
an agglutinative morphology with a much higher
level of data sparseness. This might be due to
the efficient performance of LMVR in generating
morphologically-consistent sub-word units in the
low-resource setting of agglutinative languages.
Nevertheless, the results suggest that our compo-
sitional model can learn a higher level of morpho-
logical knowledge than LMVR, which was previ-
ously found to provide comparable performance to
morphological analyzers in Turkish–English NMT
using the embedding-based input representations
(Ataman et al., 2017). Moreover, it can also gen-
eralize over different types of morphology in both
low and high resource settings.

In the Italian to English translation direction,
despite the comparable size of training data with
Czech and German in the high-resource setting,
the source word vocabulary is around 150,000
words, which represents the low level of sparse-

ness. The higher overall performance of the NMT
model which uses BPE for vocabulary reduction
compared to the compositional model suggests
that the embedding based sub-word representa-
tions are sufficient in reducing this vocabulary to
fit into a space of 30,000 units. Nevertheless, in
order to observe the actual accuracy in translat-
ing rare words, we carry out a focused analysis
where we sample from the test sets only the sen-
tences that contain singletons (i.e. words that are
observed once in the training corpus) in the source
side and evaluate the translation accuracy obtained
with each NMT model on these sentences. This
sampling results in 190 sentences in Italian, 470
sentences in Turkish, 562 sentences in German and
611 sentences in Czech to English directions. The
results of this analysis, which can be found in Ta-
ble 5, show that the compositional model trans-
lates sentences containing rare words more accu-
rately than the simple model in all languages, with
improvements ranging from 0.53 to 2.72 BLEU
points. The improvement obtained also in the Ital-
ian to English translation direction shows that al-
though in overall sub-word segmentation achieves
higher output accuracy, it is still not as efficient
as our approach in translating the small portion of
rare words in the Italian corpus.

We extend our analysis in order to also evaluate
the performance of different approaches in trans-
lating out-of-vocabulary (OOV) words. Similarly,
we sample from the test sets only the sentences
which contain OOVs, resulting in relatively larger
test sets of 443 Italian, 1096 Turkish, 1396 Czech
and 1449 German sentences. The evaluation of
each NMT model on these sets, results of which
are also given in Table 5, show that the composi-
tional model again outperforms the simple NMT
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Language Model BLEU BLEU
Direction (Singletons) (OOVs)

IT-EN Simple (BPE) 23.54 23.23
Compositional 24.07 24.98

DE-EN Simple (BPE) 14.19 14.30
Compositional 16.91 16.76

CS-EN Simple (BPE) 16.33 16.83
Compositional 16.60 17.73

TR-EN Simple (LMVR) 19.69 20.31
Compositional 20.91 21.50

Table 5: Translation accuracy of NMT models evaluated only on sentences containing singletons and OOVs. Best scores for
each translation direction are in bold font. All improvements over the baseline are statistically significant (p-value < 0.01).

model in all languages, where the improvements
range from 0.90 to 2.46 BLEU points. These
findings suggest that our compositional NMT ap-
proach provides a higher generalization capability
compared to conventional approaches to open vo-
cabulary NMT.

7 Conclusion

In this paper, we have addressed the problem of
translating rare words in NMT and proposed to
solve it by replacing the conventional sub-word
embeddings with input representations composi-
tionally learned from character n-grams using a bi-
RNN. Our approach showed significant and con-
sistent improvements over a variety of languages
with different morphological typologies, making it
a competitive approach for NMT of low-resource
and morphologically-rich languages. In the future,
we plan to extend our approach in order to im-
prove also the target side representations used by
the NMT decoder and to evaluate it under similar
morphological and data sparseness conditions on
the target side. Finally, our benchmark and imple-
mentation are available for public use.
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