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Abstract

In this paper, we present the challenge
entailed by implementing a mobile
version of a neural machine translation
system, where the goal is to maximise
translation quality while minimising
model size. We explain the whole process
of implementing the translation engine on
an English–Spanish example and we
describe all the difficulties found and the
solutions implemented. The main
techniques used in this work are data
selection by means of Infrequent n-gram
Recovery, appending a special word at the
end of each sentence, and generating
additional samples without the final
punctuation marks. The last two
techniques were devised with the purpose
of achieving a translation model that
generates sentences without the final full
stop, or other punctuation marks. Also, in
this work, the Infrequent n-gram
Recovery was used for the first time to
create a new corpus, and not enlarge the
in-domain dataset. Finally, we get a small
size model with quality good enough to
serve for daily use.

1 Introduction

Lingvanex1 is a trademark for linguistic products
made by Nordicwise LLC company. The main
focus of the company are translator and dictionary
applications that work without internet connection
on mobile and desktop platforms.

c© 2018 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.
1https://lingvanex.com/en/

In collaboration with Sciling2, an agency
specialised in providing end-to-end machine
learning solutions, a small-sized translation model
from English to Spanish was implemented.

When implementing a mobile translator, it is
crucial to understand its purpose. In our case, the
purpose was to be able to generate translations on
a daily usage scenario, without requiring a
Internet connection. This is the typical use case in
a travel scenario, where travellers often do not
have an internet connection, either because they
do not want to assume the cost of a roaming
connection, because they do not want to purchase
a local SIM card, or even because there is no good
connection in the places they are travelling to,
such as some countries of Africa. In this scenario,
the main purpose of the translation engine is to be
able to translate correctly short sentences,
composed of common words in a traveller
domain, but where other words belonging to e.g. a
parliamentary or a medical domain are less
frequent. In addition, the model requires to be
contained in terms of size, since large models
would perform poorly in a mobile device.

In this work, we focus on reducing model size
mainly through data selection techniques, until a
size of 150MB per model. However, there are
other techniques which bring promising results as
compressing the NMT model via pruning (See
et al., 2016).

Along this article we determine what is the
main influence to model size. For that, we
conducted experiments comparing model size
with total vocabulary size and word embedding
size. Also, we compare the model size with
different layer number on encoder and decoder

2https://sciling.com/
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side, and the size of recurrent layer. Next step is
to select data for training the engines through
sentence length filtering and leveraging a DS
technique. During the implementation of our
translation engines we found several problems in
the translations generated. We describe each of
the problems and we propose appropriate
solutions. After implementing these solutions, we
evaluate the quality of our final model on a test
set, and compare the results with Google’s and
Microsoft’s mobile translators.

2 Data description

The data used to train the translation model was
obtained from the OPUS3 corpus. In total, there
were 76M parallel sentences. We also leveraged
the Tatoeba corpus for DS described in Section 4.
Tatoeba is a free collaborative online database of
example sentences geared towards foreign
language learners. The development set was also
built from the Tatoeba corpus, by selecting 2k
random sentence pairs. Main figures of Tatoeba
corpus are shown in Table 1. As the test set we
create small corpus of more useful sentences in
English found in different websites. Also we add
some sentences of unigrams and bigrams. In total
we selected 86 sentences.

Table 1: Tatoeba main figures. k denotes thousands of
elements, |S| stands for number of sentences, |W | for number
of running words, and |V | for vocabulary size.

language |S| |W | |V |
English 136k 964k 40k
Spanish 136k 931k 61k

3 Model size dependency

When confronting the model size reduction, the
first question that arises is what hyper-parameters
have the most influence on model size. Before
moving forward and implementing a NMT
system, we conducted experiments comparing
model size with total vocabulary size and word
embedding size (Mikolov et al., 2013). We also
compared model size with different number of
layers and units per recurrent layer, both on
encoder and decoder sides.

To determine how the previously enumerated
hyper-parameters affect model size, we trained
3http://opus.nlpl.eu/

different models varying these hyper-parameters.
In the first experiment, we set the number of units
in the recurrent layer to 128, with a single layer
on both encoder and decoder sides. We analysed
the effect of considering a total combined (source
and target) vocabulary size |V | was pruned to
|V | = {5k, 10k, 20k, 50k, 100k}, selected
according to the most frequent words in the Opus
corpus, with souce and target vocabulary size set
to |V |/2. In addition, we also studied different
embedding vector sizes
|ω| = {64, 128, 256, 512}. The results obtained
are shown in Figure 1a.

Next, we analysed the effect of considering
different number of hidden units and the number
of layers. In this case, we fixed to |ω| = 128. We
found that the number of layers, using 128 hidden
units, has almost no effect on model size. In
Figure 1b, we only show 1 and 4 layers for 128
units. Looking at Figure 1, we can conclude that
the number of layers has small effect on model
size comparing with number of hidden units and
embedding size. Figure 1 can be leveraged to
decide on adequate values for these
hyper-parameters, once model size has been fixed
to 150MB.

4 Data filtering

Data filtering involved two main steps: first,
sentences with length over 20 words were
discarded. We did this under the assumption that a
mobile translator is mainly designed for
translating short sentences. Second, we performed
data selection, leveraging Infrequent n-gram
Recovery (Gascó et al., 2012). The intuition
behind this technique is to select, from the full
available bilingual data, those sentences that
maximise the coverage of n-grams in a small,
domain-specific dataset. The full available
bilingual data is sorted by infrequency score of
each sentence in order to select first the most
informative.

Let be χ the set of n-grams that appear in the
sentences to be translated and w one of them;
C(w) denotes the counts of w in the source
language training set; t the threshold of counts
when an n-gram is considered infrequent, and
N (w) the counts of w in the source sentence f to
be scored. The infrequency score of f is:

i(f) =
∑

w∈χ
min(1, N(w))max(0, t− C(w)) (1)
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(a) Model size depending of vocabulary size and
embedding size. Number of units in the recurrent layer
set to 128, and the number of layers is 1.
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(b) Model size depending of vocabulary size, number of units
in the recurrent layer (rnn) and number of layers, with |ω| =
128.

Figure 1: Model size dependency of different parameters. k denotes thousands of elements and MB is an abbreviation for
megabyte. The vocabulary size is the sum of source and target vocabulary.

We applied Infrequent n-gram Recovery to the
60M sentences from the Opus corpus as
out-of-domain. Intuitively, we selected sentences
from the available data until all n-grams, with n
up to 5, extracted from the Tatoeba corpus have a
maximum of 30 occurrences (if such a thing is
possible with the data available). However,
applying this technique on the full set of 60M
sentences would have led to very long execution
time. Hence, we divided the corpus into 6
partitions, and the selection was performed on
each one of these partitions. Then, we joined the
selections from all 6 partitions and conducted a
second selection step on this corpus, since some
n-grams could well have 6 · 30 occurrences. This
led to a final selection of 740k sentences. The
selected data set presented a vocabulary size of
19.4k words in source and 22.9k on target side.
The total (combined) vocabulary was
|V | = 42.4k. Note that selection was conducted
on the tokenised and lowercased corpus.

5 Experimental setup

The system was trained using the
OpenNMT (Klein et al., 2017) deep learning
framework based in Torch. OpenNMT is mainly
focused at developing sequence-to-sequence
models covering a variety of tasks such as
machine translation, summarisation, image to
text, and speech recognition. Byte-pair encoding
(BPE) (Sennrich et al., 2015) was trained on the
selected training dataset, and then applied to
training, development, and test data. In each
experiment we trained a recurrent neural network

with long short term memory (LSTM) (Hochreiter
and Schmidhuber, 1997). We use global attention
layer to improve translation by selectively
focusing on parts of the source sentence during
translation. Also, we use input feeding to feed
attentional vectors as inputs to the next time steps
to inform the model about past alignment
decisions (Luong et al., 2015). However, this
option only had a visible effect with 4 or more
layers. Training was performed with 50 epochs
using the adam (Kingma and Ba, 2014) optimiser,
with learning rate of 0.0002. Finally, we selected
the best model according to higher
BLEU (Papineni et al., 2002) score on the
development set, and used that model to translate
the test set. Given that the test set is very small,
we performed a human evaluation to analyse
whether the quality obtained was good enough.

6 Results and analysis

We trained different typologies of neural networks
observing the conclusions in Section 3. In each of
the experiments we varied the hyper-parameters
described in Section 3. Since the total combined
vocabulary was fixed to |V | = 42.4k, from
Figure 1 we can infer the combination of
hyper-parameters with which the allowed model
size will not be exceeded.

Table 2 shows the values of the
hyper-parameters used in each experiment,
together with the BLEU score obtained by each
model and its size.

The best model according to the BLEU score
on the development set is the model trained with 2
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Table 2: Hyper-parameter values for the different
experiments (exp) conducted and results obtained. |ω| is the
size of the word embedding vector, expressed in megabytes.

exp |ω| layers rnn size BLEU

dev test

1 128 2 128 146 39.0 26.6
2 128 3 128 151 36.9 22.8
3 128 4 128 155 37.7 21.8
4 64 4 256 206 38.7 23.8
5 256 4 64 203 32.7 21.1

layers, 128 units on recurrent layer, with
|ω| = 128. Also, it is the smallest model among
those analysed in Table 2.

6.1 Problems found

Analysing the translations from the test set we
found 3 different problems. In the following, we
describe each of them and propose the
corresponding solutions.

6.1.1 Repeated words problem
Analysing the quality of the best model

obtained, we noticed that sentences with more
than 7 words were translated correctly. However,
translations of very short sentences contained
repeated words, e.g. “perro perro perro perro
perro perro”. The hypothesis for explaining this
fact could be because of differences between
training and test sentence lengths. To understand
the validity of this hypothesis, we analysed the
histogram of sentence lengths of training set,
shown in Figure 2. As seen, the source side of the
training data contains a very few amount of
sentences shorter than 8 words, in contrast to the
target side, where the distribution of sentence
length is more uniform. We believe such
difference is caused by the sentence selection
algorithm used: selection is conducted in the
source language and the selection algorithm tends
to assign higher scores to longer sentences, since
the more n-grams the source sentence contains,
the more likely it includes infrequent n-grams. To
cope with this fact, we modified the Infrequent
n-gram Recovery strategy as follows:

Re-scoring of sentences: To fix the problem of
repeated words we decided to modify the sentence
selection procedure modifying the Infrequent
n-gram Recovery scoring function by adding a
normalisation step. In order to normalise such
score, we modified Equation 1 as follows:

i(f) =
∑

w∈χ

min(1, N(w))max(0, t− C(w))

|f| − w + 1

(2)
where the denominator normalises by the number
of n-grams of order n in the sentence. With this
normalisation, we avoid the side-effect of sentence
length on the infrequency score, ultimately leading
to selecting shorter sentences and improving the
NMT system’s translation of such sentences.

After applying the infrequency score in
Equation 2 for selecting the data anew, we
obtained 667k sentences. In Table 3 we show the
average sentence length in source and target
language before and after applying the sentence
length normalisation. Average sentence length of
Tatoeba is shown for comparison purpose. As
shown, we are able to obtain much shorter
sentences by including normalisation. The model
achieved 36.3 BLEU in development, and 22.8 in
test, with a model size of 121MB. Although this
score is slightly worse than the one achieved in
experiment 1 (Table 2), we believe BLEU is not
always the most adequate metric for evaluating
translation quality (Shterionov et al., 2017). By
manually analysing the hypotheses, we concluded
that the repeated words problem had been
successfully solved.

Table 3: Average sentence length of Tatoeba and training set
before and after applying normalisation in Equation 2.

source target

Tatoeba 7.1 6.8

train
before normalisation 17.4 15.1
after normalisation 10.4 9.0

6.1.2 Punctuation mark expectation
Analysing the hypotheses generated by our new

model, we noticed that the model generated
wrong translations with very short sentences, e.g.
“dog”, or “cat”, generating surprising translations
such as “amor”. However, when adding a
punctuation mark to the source sentence, e.g.
“dog.”, the translation was correctly produced.
Our first intuition regarding this was that the
model was expecting a punctuation mark at the
end of each sentence. This intuition was
confirmed by the fact that 94% of the sentences in
the source language training set had a dot or other
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Figure 2: Histogram of training set.

punctuation marks at the end of sentence, and one
of the more common final words without a
punctuation mark was precisely “amor”. Hence,
the network was confused (i.e., the model was
poorly estimated) when such punctuation mark
did not appear. For dealing with this problem, we
devised two possible solutions:

Special word ending: We append a special
word @@ at the end of each sentence. Then, the
model is forced to learn that a sentence will
always finish with @@, and the fore-last word
might or might not be a punctuation mark. This
was applied as a pre- and post-processing steps,
and will be referred to as special word ending.
The model trained using special word ending
achieved 36.4 BLEU in development, and 26.3
BLEU in test. This model was reached after 21th
epochs and its size was of 121MB.

Double corpus: We enlarged the training
corpus by concatenating all existing sentences
with punctuation mark at the end, but removing
such symbols. By doing so, the model is able to
learn that a sentence can finish with or without
punctuation marks. This time, the model had a
size of 156MB, and reached 37.3 BLEU in
development, and 25.1 in test.

Both techniques described previously solved
the problem of punctuation mark expectation.
However, since the double corpus strategy
produced a larger model, with lower BLEU score,
we decided to employ the special word ending
technique.

6.1.3 Missed segments
Further analysing the translations generated by

our model, noticed an additional problem: in case

the segment being translated was composed of
several short sentences, only the first of them was
being actually translated. For instance, “Thank
you. That was really helpful.” was translated into
“Gracias.” (“Thank you.”).

To solve this problem, we decided to apply a
preprocessing step, consisting separating
segments composed by several sentences into
different segments, according to punctuation
marks “.”, “?” and “!”, in the case of English
language, and also in “¿” in case of Spanish
language. We split 86 sentences from test set into
118, given that most of them were composed by
short sentences. After this preprocessing step was
performed, the translations were correctly
generated, reaching 36.4 BLEU in development,
and 33.7 BLEU, this last one being the highest
score so far.

7 Final evaluation

Table 4 summarizes the BLEU scores obtained
after applying each one of the solutions described
in Section 6. After applying the normalised
infrequency score, the special word ending, and
preprocessing composed sentences, we improved
the quality of test set by about 7 BLEU points.

Table 4: Translation quality, as measured by BLEU, after
applying each technique described. Size is given in MB.

technique size BLEU

dev test

Base model 146 39 26.6
Re-scoring of sentences 121 36.3 22.8
Special word ending 121 36.4 26.3
Double corpus 156 37.3 25.1
Sentence splitting 121 36.4 33.7
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As final evaluation of our translation system,
we compared its quality with Google’s and
Microsoft’s mobile translators. The BLEU score
on the test set obtained by each of the analysed
translators, alongside with their corresponding
model sizes, are shown in Table 5. In general, all
translators generate good quality hypotheses,
although some small differences could be
observed. We noticed that our model was
especially accurate when using punctuation marks
and capital letters, whereas Google’s translator
introduced punctuation marks in wrong places.
Also, only in a few cases, Google’s translator,
uses capital letters. We believe this is the reason
why Google’s translator achieved such a low
BLEU score, as compared to the other two
systems. However, Google’s translator features a
much smaller than the other two others. Also,
Google’s and Microsoft’s models are
bidirectional, which means that the size of our
model should be doubled (2 · 121MB) to be
comparable.

Table 5: Translation quality and model size comparison for
Google, Microsoft and our best model.

Google Microsoft our system

BLEU 16.7 28 33.7
Model

size 29MB 234MB 121MB

Both
directions YES YES NO

8 Conclusions

In this work, we have presented our approach to
developing a small size mobile neural machine
translation engine, in the specific case of
English–Spanish. We leveraged a data selection
technique to select more suitable data for real use
of our translator. We have presented some
adjustments to the selection algorithm the
translation quality obtained. Also, we proposed a
solution to deal with the problem of repeated
words, and another one for dealing with missed
sentence translations within some segments.
Finally, we compared the quality of our model
with Google’s and Microsoft’s mobile translator
versions. We overcome significantly the BLEU
score of both translators, partially due to being
able to translate punctuation marks and capital
letters correctly. Our model reached a size of
121MB, which is even much smaller than the size

we considered initially as acceptable, presenting
good translation quality for the specific purpose
(travel domain). The translations obtained by our
model are perfectly understandable and fluent,
and can be used in a scenario where there is no
internet connection. In addition, we are still
working on improving its quality and on reducing
model size even further, using other effective
techniques such as weight pruning.
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Gascó, G. et al. (2012). Does more data always
yield better translations? In Proc. of EACL,
pages 152–161.

Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural computation, pages
1735–1780.

Kingma, D. P. and Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint,
arXiv:1412.6980.

Klein, G. et al. (2017). OpenNMT: Open-source
toolkit for neural machine translation. arXiv
preprints, arXiv:1701.02810.

Luong, M. et al. (2015). Effective approaches
to attention-based neural machine translation.
arXiv preprints, arXiv:1508.04025.

Mikolov, T. et al. (2013). Distributed
representations of words and phrases and
their compositionality. arXiv preprints,
arXiv:1310.4546.

Papineni, K., , et al. (2002). BLEU: a method for
automatic evaluation of machine translation. In
Proc. of ACL, pages 311–318.

See, A. et al. (2016). Compression of neural
machine translation models via pruning. arXiv
preprints, arXiv:1606.09274.

Sennrich, R. et al. (2015). Neural machine
translation of rare words with subword units.
arXiv preprint, arXiv:1508.07909.

Shterionov, D. et al. (2017). Empirical evaluation
of NMT and PBSMT quality for large-scale
translation production. In Proc. of EAMT, pages
75–80.

302


