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Abstract

In a world of proliferating data, the abil-
ity to rapidly summarize text is grow-
ing in importance. Automatic summariza-
tion of text can be thought of as a se-
quence to sequence problem. Another area
of natural language processing that solves
a sequence to sequence problem is ma-
chine translation, which is rapidly evolv-
ing due to the development of attention-
based encoder-decoder networks. This
work applies these modern techniques to
abstractive summarization. We perform
analysis on various attention mechanisms
for summarization with the goal of devel-
oping an approach and architecture aimed
at improving the state of the art. In par-
ticular, we modify and optimize a trans-
lation model with self-attention for gener-
ating abstractive sentence summaries. The
effectiveness of this base model along with
attention variants is compared and ana-
lyzed in the context of standardized eval-
uation sets and test metrics. However,
we show that these metrics are limited in
their ability to effectively score abstractive
summaries, and propose a new approach
based on the intuition that an abstractive
model requires an abstractive evaluation.

1 Introduction

The goal of summarization is to take a textual
document and distill it into a more concise form
while preserving the most important information
and meaning. To this end, two approaches have
historically been taken; extractive and abstractive.
Extractive summarization selects the most impor-
tant words of a given document and combines
and rearranges them to form a final summarization

(Nallapati et al., 2017). This approach is restricted
to using words directly from the source document
and so is unable to paraphrase. Abstractive algo-
rithms generate a summary from an attempt to un-
derstand a document’s meaning, allowing for para-
phrasing much like a human may do. Abstractive
approaches are more difficult to develop than ex-
tractive ones because an intermediate representa-
tion of knowledge is required. As such, dominant
techniques of summarization have been extractive
in nature, with wide-ranging solutions utilizing
statistical, topic-based, graph-based, and machine
learning approaches (Gambhir and Gupta, 2017).
With the potential for generating more coherent
and insightful summaries, abstractive approaches
are gaining in popularity fueled by novel deep
learning techniques (See et al., 2017). The ab-
stractive summarization process includes convert-
ing words to their respective embeddings, com-
puting a document representation, and generat-
ing output words. Neural networks have recently
been shown to perform well for every step (Dong,
2018).

In deep learning models, attention allows a de-
coder to focus on different segments of an input
while stepping through output regions. In the re-
lated sequence to sequence task of machine trans-
lation, attention was introduced to the existing
encoder-decoder model (Bahdanau et al., 2014).
This resulted in large improvements over past sys-
tems due to the ability to consider a larger window
of context during the output generation. Progress-
ing this further, Vaswani et al. (2017) showed that
multi-headed self-attention can replace recurrence
and convolutions entirely. As the areas of machine
translation and abstractive summarization are re-
lated both structurally and semantically, the devel-
opments in machine translation may inform the di-
rection of research in abstractive summarization.
In this paper, we apply these advancements and1



develop them further in pursuit of sentence sum-
marization. In any attempt at summarization, the
resulting text must be much more condensed than
the original. In this task, all generated summaries
are constrained to a fixed maximum length so that
tested models must learn how to decide what in-
formation should be reproduced.

2 Related Work

Successful sentence summarization approaches
have classically used statistical methods. TOP-
IARY (Zajic et al., 2004) detected salient top-
ics that guided sentence compression while us-
ing linguistic transformations. MOSES, a statis-
tical machine translation system, also performed
well when directly used for summarization (Koehn
et al., 2007). Attention mechanisms have been
shown to improve the results of abstractive sum-
marization. Rush et al. (2015) improved over clas-
sic statistical results by using a neural language
model with a minimal contextual attention en-
coder. After the primary model training, an ex-
tractive tuning step was performed on an adja-
cent dataset. A related extension of this used a
convolutional attentive encoder and experimented
with replacing the decoder language model with
RNN variants. LSTM cells and RNN-Elman both
showed improved ROUGE scores (Chopra et al.,
2016). An attentive encoder-decoder was also em-
ployed by Zeng et al. (2016) with one RNN ar-
chitecture to re-weight another to improve context
across the input sequence. Their decoder used at-
tention with a copy mechanism that differentiated
between out of vocabulary words based on their
usage in the input. Nallapati et al. (2016) con-
tinued progress on encoder-decoder architectures
by employing a bidirectional GRU-RNN encoder
with a unidirectional GRU-RNN decoder. Im-
posing dynamic vocabulary restrictions also im-
proved results while reducing the dimensionality
of the softmax output layer. Pointer-generator net-
works encode with a bidirectional LSTM and de-
code with attention restriction. A coverage vec-
tor that limits the attention of words previously at-
tended over is maintained (See et al., 2017).

Recently, summarization has made progress at
the paragraph level due to reinforcement learning.
A recurrent abstractive summarization model used
teacher forcing and a similarity metric that com-
pared the generated summary with the target sum-
mary (Paulus et al., 2017). The architecture con-

Figure 1: Transformer-based network architec-
ture. The multi-headed attention mechanisms con-
tain various recall options similar to and that ex-
pand upon Vaswani et al. (2017).

tained a bi-directional LSTM with intra-attention.
Actor-critic reinforcement learning was used by
Li et al. (2018) to produce the highest scores for
sentence summarization. One important consid-
eration when optimizing purely on the test met-
ric is that while overall recall is improved, higher
ROUGE scores do not necessarily correlate with
the readability of summaries.

3 Models

Encoder-decoder architectures provide an adapt-
able structure for the development of systems that
solve sequence to sequence problems. The en-
coder maps the input sequence to a latent vector
representation. The decoder takes this representa-
tion, called the context vector, and generates the
output sequence. The models and their variants
that follow are structured as such. We select a base
architecture that provides a strong foundation on
which to analyze the effect of self-attention vari-
ants.

3.1 The Transformer
The Transformer architecture as proposed by
Vaswani et al. (2017) is notable for performing
state of the art Machine Translation, and is more
efficient to train than past systems by orders of
magnitude. This is made possible by replacing
sequence aligned recurrence with parallel self-
attention. The sequence order is preserved in the
self-attention modules by including positional em-
beddings. Instead of incremental values, the posi-
tional embeddings are determined by position on
a sinusoidal time series curve. Further, masking2



of the decoder self-attention is performed, mak-
ing the output of the next token dependent on that
which has already been generated. Multi-headed
self-attention is used in both the encoder and de-
coder. These mechanisms map a query vector to
a key-value vector pair which results in an output
vector. Tying together the encoder and decoder
is a third multi-headed attention mechanism. The
query comes from the self-attentive output of the
decoder, and the keys and values from the self-
attentive output of the encoder. In the work done
by Vaswani et al. (2017), all attention heads used
scaled dot-product attention, which is computa-
tionally efficient as multiple query, key, and value
vectors can be implemented as a combined matrix.
Scaled dot-product attention also defines the struc-
ture for the self-attention mechanisms we present
below.

attention = softmax(
QKT

√
d

)V (1)

Many other attention mechanisms exist beyond
the base dot-product attention. We analyze the
performance of these mechanisms in the context
of abstractive summarization. Changing the way
the query, key, and value vectors interact allows
an attention mechanism to learn different relation-
ships between sequence elements.

Relative dot-product attention uses scaled dot-
product attention, but instead of using absolute po-
sitional encodings, uses a relative positional en-
coding. These relative encodings learn to relate
the elements of the query to both the elements of
the keys and values (Gehring et al., 2017). The en-
codings can be distance-limited to a context win-
dow in the vector sequences.

Local attention divides the key-value vectors
into localized blocks (Liu et al., 2018). Each
query is strided over a corresponding block with a
given filter size. Blocks can contain positions both
prior to and following a given position, thereby not
masking any element based on absolute position.
Self-attention is performed over each block in iso-
lation.

Local masked attention adds a mask to the
blocks of local attention. Blocks in a future se-
quential position are masked from the query but all
elements within a block remain visible to a given
query position. Intuitively, masking future posi-
tions forces a mechanism to attend to current and
past positions, which may be an important restric-

tion of the attention distribution.
Local block masked attention masks both previ-

ous blocks and future blocks for a query position.
Further, future positions within individual blocks
are masked.

Dilated attention also divides the key-value vec-
tors into blocks, but introduces a gap in between
each block. Each query position is limited to a
context window of a specified number of blocks
both preceding and following the memory posi-
tion.

Dilated masked attention performs the same
operations as dilated attention and masks future
memory positions within each block.

4 Evaluation

The standard test metric for automatic summary
generation is ROUGE, or Recall-Oriented Under-
study for Gisting Evaluation (Lin, 2004). Be-
fore the ROUGE metrics were introduced, hu-
man judges were used for summary evaluation.
Human judges provide an ideal evaluation, but
are impractical for regular use. ROUGE allows
for automatic comparison of generated summaries
to target summaries, where target summaries are
human-generated. Limited-length recall is com-
monly reported using ROUGE-1, ROUGE-2, and
ROUGE-L. ROUGE-1 and ROUGE-2 compare
unigram and bigram overlap, respectively. This
generalizes to ROUGE-N for n-gram overlap.
ROUGE-L determines the longest common subse-
quence (LCS). Evaluation quality of summariza-
tion models can be directly compared to previ-
ous work because the same metrics were reported
for past models by Rush et al. (2015), Zeng et al.
(2016), Nallapati et al. (2016), Li et al. (2018), and
others. These metrics allow for reasonably accu-
rate comparison of summary generation models,
but inherent problems exist. One critical limitation
is that ROUGE does not consider equivalent para-
phrasing or synonymous concepts. Since ROUGE
works at the word level, meaning can only be cap-
tured and compared in a binary manner; either a
word appears in the generated summary or it does
not.

ROUGE 2.0 was proposed to alleviate this prob-
lem as well as remove the expectation that gen-
erated summaries need to be identical to the tar-
get summary (Ganesan, 2015). As pointed out by
Rush et al. (2015), even the best human evalua-
tor scored just 31.7 ROUGE-1 on the DUC20043



Target Endeavour astronauts join two segments of International Space Station.
Gen1 Endeavour astronauts join two sections of International Space Station.
Gen2 Endeavour astronauts remove two segments of International Space Station.
Gen3 Endeavour astronauts join two segments of International Space Station.

Sentence ROUGE-1 ROUGE-2 ROUGE-l Cos-Sim WMD VERT
Gen1 88.89 75.00 88.89 0.979 0.418 94.77
Gen2 88.89 75.00 88.89 0.924 0.512 91.08
Gen3 100.00 100.00 100.00 1.000 0.000 100.00

Table 1: Highlighted differences between ROUGE and VERT scoring. Notice that an incorrect word re-
placement (Gen2) scores the same as a reasonable word replacement (Gen1) in ROUGE. VERT discounts
the score of Gen2 accordingly. Gen3 is included to show the perfect scores for an identical summary.

dataset. This illustrates the idea that two sum-
maries do not need to be the same in order for
both to be of high quality. Thus, a more appropri-
ate approach to summary comparison may be to
evaluate the semantic similarity between the gen-
erated and target summaries instead of using iso-
lated word counts. ROUGE 2.0 captures seman-
tic similarity using a synonym dictionary while
still evaluating n-grams and LCS. While this ad-
dresses the word-level shortcoming of the origi-
nal ROUGE metrics, similarity is still fixed to a
discrete list of acceptable alternatives, which does
not fully capture phrase substitution. A further im-
provement could be to evaluate the semantic simi-
larity between two entities on a continuous scale.

4.1 VERT Metric

To improve the quality of summary evaluation, we
introduce the VERT metric1, an evaluation tool
that scores the quality of a generated hypothesis
summary as compared to a reference target sum-
mary. VERT stands for Versatile Evaluation of Re-
duced Texts. VERT compares summaries on their
underlying semantics rather than word count ra-
tios. To calculate a VERT score for a summary
pair, a similarity sub-score and dissimilarity sub-
score are calculated and functionally combined.
Naturally, a higher similarity score and a lower
dissimilarity score leads to a higher, better VERT
score. The similarity sub-score considers the se-
mantics of each summary taken at the document
level. A sentence embedding vector is synthe-
sized for both generated and target summaries, and
the cosine similarity between these two vectors

1Our VERT implementation is made publicly avail-
able at: https://github.com/jacobkrantz/
VertMetric

provides the similarity score. The sentence em-
beddings are generated using InferSent, an open-
source neural encoder trained on natural language
inference tasks (Conneau et al., 2017). InferSent
was chosen because it has been shown to general-
ize well for use in various problems requiring sen-
tence representations. The dissimilarity sub-score
operates at the individual word level rather than at
the sentence level. An aggregate Euclidean dis-
tance is calculated between the words of the gen-
erated summary and the words of the target sum-
mary. This is done using the word mover’s dis-
tance (WMD) algorithm, a measure of how far
document A must travel to match document B
within a word vector space (Kusner et al., 2015).
Stop words are discarded prior to the distance cal-
culation as their effect on the distance between
documents is negligible.

4.2 Sub-Score Motivations

A consideration would be to use just one of the
two sub-scores as they are independent calcula-
tions. However, both the InferSent cosine similar-
ity and WMD are made more robust by the pres-
ence of the other score. WMD is unaffected by
word ordering, whereas the encoder of InferSent
maintains sequential input. To illustrate, suppose
the target sentence is “go right and then left” and
the generated sentence switches the order, stat-
ing “go left and then right.” WMD gives this a
perfect distance of 0.0 but the InferSent similar-
ity more accurately discounts the score by 4.3%.
On the other hand, when longer summaries are
compared, InferSent embeddings begin to lose the
effect of individual words because the word em-
beddings are replaced with a singular embedding.
This is less of a problem for WMD. Finally, the4



similarity sub-score uses GloVe embeddings2 pre-
trained on Common Crawl while the dissimilarity
sub-score uses Word2Vec3 trained on the Google
News dataset. Using different word embeddings
provides resistance to potential learned represen-
tation biases.

4.3 Formula Specification
The similarity sub-score is defined as
sim(s1, s2) = cos(encode(s1), encode(s2))
and the dissimilarity sub-score is defined as
dis(s1, s2) = min(wmd(s1, s2), α). The
maximum dissimilarity value α is the default
distance when all of the generated words are
out of vocabulary. Without this default, sum-
maries with no words to compare would have
an infinite distance and too strongly influence
VERT score averages. Resulting sub-score values
range as such: 0.0 ≤ sim(s1, s2) ∈ R ≤ 1.0,
and 0.0 ≤ dis(s1, s2) ∈ R ≤ α. We seek
to combine these scores such that the final
VERT score can be treated as a percentage:
0.0 ≤ V ERT (s1, s2) ∈ R ≤ 1.0. Further,
sim(s1, s2) and dis(s1, s2) should be given equal
weight in the final VERT score. To satisfy both
criteria, we present the VERT equation:

V ERT (s1, s2) =

1

2
(1 + (sim(s1, s2)−

1

α
dis(s1, s2)))

(2)

where α = 5.0. The dissimilarity is normalized
by α and the outer linearity, as multiplied by 1

2 ,
shifts the range from [−1.0, 1.0] to [0.0, 1.0]. For
the choice of α, we observe an empirical distance
ceiling of 5.0 in Table 2. Incorporating this ceil-
ing gives both sub-scores equal precedence while
removing the necessity of a nonlinearity, such as
normalization by the hyperbolic tangent.

4.4 Hyperparameters and Baseline
The similarity sub-score uses a pre-trained In-
ferSent encoder for reproducibility, and thus needs
no hyperparameter adjustments. The dissimilarity
requires just the hyperparameter α to specify the
maximum threshold of WMD and can stay at the
default value of 5.0. With the same value used to
normalize the dissimilarity, VERT is straightfor-
ward to use with just this single hyperparameter.

2https://nlp.stanford.edu/projects/
glove/

3https://code.google.com/archive/p/
word2vec/

WMD Summary Count
0→ 1 74
1→ 2 860
2→ 3 2858
3→ 4 2150
4→ 5 58
5+ 0

Table 2: WMD among human summaries on
DUC2004. For each article, every human sum-
mary was held out as the target to compare the
other human summaries to resulting in 6000 com-
parisons.

Metric Pearson P-Value
ROUGE-1 0.3039 0.0319
ROUGE-2 0.2577 0.0708
ROUGE-L 0.3071 0.0300
VERT 0.3681 0.0085

Table 3: Pearson correlation coefficient between
automatic metrics and human evaluation of re-
sponsiveness.

To provide a scoring reference, we test each hu-
man summary of DUC2004 on VERT using the
same holdout process as done in Table 2. The av-
erage similarity sub-score is 0.7488, the average
dissimilarity sub-score is 2.7170, and combined
the average VERT score is 0.6027.

4.5 Comparison to Human Evaluation

To evaluate the effectiveness of VERT, we cal-
culate the correlation between VERT scores and
scores given by human judges for generated sen-
tence summaries. Using the relative dot-product
attention model, 50 summaries are generated on
the DUC2004 dataset and evaluated with the
VERT metric by averaging the VERT scores be-
tween the four target summaries. We then con-
duct an experiment in which two human eval-
uators score the 50 generated summaries based
on the DUC 2006 Responsiveness Assessment4.
The primary consideration of responsiveness is the
amount of information in the summary that relates
to the original sentence. The evaluators score the
level of responsiveness on a 5-point Likert scale,
with 5 being the best possible. Table 3 shows that
VERT correlates with human judgment of respon-

4 https://duc.nist.gov/duc2007/
responsiveness.assessment.instructions5



siveness stronger than all three standard ROUGE
metrics.

5 Experiments

5.1 Experiment Setup

The environment and evaluation of all models
strictly follows the precedent set by Rush et al.
(2015). For both training and testing, we extract
sentence-summary pairs from news articles. The
first sentence of each article is treated as the sen-
tence to be summarized, while the headline of the
article acts as the target summary.

5.2 Datasets

The training data comes from the Gigaword
dataset, which is a collection of about 4 million
news articles (Graff et al., 2003). It is necessary to
discard certain article-headline pairs as some news
articles open with a sentence that poorly relates to
the headline, such as a question. Preprocessing
tasks includes filtering, PTB tokenization, lower-
casing, replacing digit characters with #, and re-
placing low-frequency words with UNK. Eval-
uation for hyperparameter tuning is performed
on the DUC2003 dataset5. Testing is done on
the DUC2004 dataset6 where the summaries are
capped at a length of 75 bytes. For both DUC2003
and DUC2004, each article has four target sum-
maries to be compared against. For processing Gi-
gaword, we used the same data provided by Rush
et al. (2015), but both DUC datasets had to be pre-
processed according to the tasks specified. Certain
sentence-summary pairs within DUC 2004 poorly
relate to each other due to the fact that the human-
generated summaries used the context of the entire
DUC article to decide on an adequate summary.
Since this shortcoming is present across all mod-
els attempting sentence summarization on DUC,
we made no effort to remove these difficult pair-
ings from the test set.

5.3 Base Implementation

For the hyperparemeter specification, models used
8 attention heads and a dimension of 2048 for
the dense feed forward layers. Cross entropy was
used for the loss function, and optimization was
performed with the Adam optimizer using a vari-
able learning rate to encourage final convergence.

5https://duc.nist.gov/duc2003/tasks.
html

6https://duc.nist.gov/duc2004/

Dataset # Articles Sent Len Sum Len
Gigaword 3803957 31.4 8.3
DUC2003 624 32.7 11.2
DUC2004 500 31.3 11.7

Table 4: Comparison of general dataset details.
Sentence and summary lengths are reported as the
average word count. Gigaword has noticeably
shorter target summaries than either DUC dataset.
To counteract the models generating too short of
summaries, we augment the beam search decod-
ing probabilities to encourage longer summaries.

Training required approximately 25 epochs. A
promising feature of using an attention-based ar-
chitecture is that the models used here are capa-
ble of being trained in approximately 4 hours on a
single GPU, whereas recent state of the art recur-
rent summarization models have been mentioned
to take 4 days (Rush et al., 2015). We imple-
mented these models using the Tensor2Tensor7 li-
brary backed by TensorFlow. A strong local min-
imum exists when training, which closely relates
to extracting the first n words of the input text up
to 75 bytes. Such a trivial approach produces rel-
atively high ROUGE scores simply due to the nat-
ural similarity between target summaries and in-
put sentences. Diversity of attention can be en-
couraged by varying the learning rate and modify-
ing the attention mechanism itself. For the decod-
ing step, beam search is used with a beam size of
8. This results in ROUGE scores that are higher
than a more simple greedy inference. Decoding
to a fixed length of 75 bytes does not align easily
with word-level decoding, so for the implemen-
tation we approximate the cutoff by limiting the
summary sequence to 14 words.

6 Results

6.1 Attention Comparisons
For each of the attention mechanisms described
above, we performed a full scale analysis of
their performance by training each model on the
Gigaword dataset and evaluating on DUC2004.
For each experiment, the foundational architec-
ture was held constant. We modified both the en-
coder self-attention and decoder self-attention to
perform as specified by the given attention mech-
anism. In Table 5, the model that used scaled

7https://github.com/tensorflow/
tensor2tensor6



Mechanism RG-1 RG-2 RG-L VERT-S VERT-D VERT
s-dot-prod 25.72 8.51 23.08 0.73523 2.76307 59.13
rel-s-dot-prod 27.05 9.54 24.44 0.73876 2.73907 59.55
local 1.93 0.00 1.93 0.02084 5.00000 1.04
local-mask 25.72 8.54 23.30 0.73361 2.77857 58.89
local-blk-mask 14.13 2.75 12.63 0.67226 3.18881 51.73
dilated 0.01 0.00 0.01 0.09509 3.66543 18.10
dilated-mask 19.06 5.23 17.45 0.68682 3.04922 53.85

Table 5: Comparison of attention mechanisms using DUC2004. RG represents ROUGE-Recall, VERT-S
is the InferSent cosine similarity sub-score, and VERT-D is the average WMD sub-score.

Model RG-1 RG-2 RG-L VERT
TOPIARY (Zajic et al., 2004) 25.12 6.46 20.12 -
ABS (Rush et al., 2015) 26.55 7.06 22.05 58.49
RAS-LSTM (Chopra et al., 2016) 27.41 7.69 23.06 -
MOSES+ (Koehn et al., 2007) 26.50 8.13 22.85 -
RAS-Elman (Chopra et al., 2016) 28.97 8.26 24.06 -
ABS+ (Rush et al., 2015) 28.18 8.49 23.81 59.05
RA-C-LSTM (Zeng et al., 2016) 29.89 9.37 25.93 -
words-lvt5k-1sen (Nallapati et al., 2016) 28.61 9.42 25.24 -
S-ATT-REL (ours) 27.05 9.54 24.44 59.55
AC-ABS (Li et al., 2018) 32.03 10.99 27.86 59.67

Table 6: ROUGE-recall scores of compared models on DUC2004. Sorted by ROUGE-2 score. ABS,
ABS+, and AC-ABS VERT scores were calculated using summaries provided by their respective authors.

dot-product attention acted as the baseline (s-dot-
prod). The highest performing mechanism was
relative scaled dot-product attention, showing that
relative positional encodings can be more insight-
ful than absolute encodings. This demonstrates
that token generation may rely more heavily on
the relationships between surrounding words than
relationships at a global sequential level. Lo-
cal masked attention attained marginally higher
ROUGE-2 and ROUGE-L scores than scaled dot-
product attention. However, scaled dot-product at-
tention scored noticeably higher with VERT, pri-
marily due to the similarity sub-score. This sug-
gests the scaled dot-product model is better than
the local-mask model when considering the sum-
mary semantics across an entire sequence. Both
local and dilated attention mechanisms repeated
the same words regardless of input sentence; both
masked counterparts did not have this problem.

We found a high dependence on batch size dur-
ing the training process. Models would not con-
verge when batch sizes were at or below 2000 to-
kens per batch. The batch size used to train the
above models was 8192 tokens. Dilated attention

and dilated-mask attention models were trained at
lower batch sizes due to higher memory require-
ments. This may have negatively effected results.

6.2 Model Comparisons

We compare our best model with past work by
comparing published ROUGE scores. Slight vari-
ances may be present in the reported metrics due
to potential differences in data preprocessing rou-
tines. In Table 6, we compare our best model
with that of published results. The relative dot-
product self-attention model (S-ATT-REL) beats
all ROUGE scores of ABS, but has a lower
ROUGE-1 when ABS is tuned with an extrac-
tive routine on DUC2003 (ABS+). S-ATT-REL
is comparable to but lower than certain mod-
els when it comes to ROUGE-1 scores. How-
ever, over the longer subsequence comparisons of
ROUGE-2 and ROUGE-L, S-ATT-REL performs
very well. This can be attributed to the ability of
self-attention mechanisms to retain a strong mem-
ory over past elements of the input and decoded
sequences. Only the actor-critic method (AC-
ABS) beats S-ATT-REL in all tested categories.7



6.3 Qualitative Discussion
The summaries generated by our best model are
strongly abstractive, illustrated by Example S(1)
in Figure 2. Example S(2) showcases the abil-
ity to utilize long range recall. From the apposi-
tive phrase, the model determined that Hariri was
the prime minister of Lebanon and adjusted the
morphology of the country for succinctness. The
model also determined Hariri was resigning based
on the words “bowing out”. Occasionally, atten-
tion heads are misdirected and attend to words
or phrases that do not contain the primary mean-
ing. This occurred in Example S3 with was in-
correctly modified by the inclusion of “not”. The
generated summaries exhibit information beyond
what was directly in the input sentence; Example
S5 correctly identifies Premier Romano as Italian
which greatly improves the informedness of the
summary. A primary strength of the self-attentive
model is incorporating abstract information from
all segments of the input sentence. This is sug-
gested in the long subsequence ROUGE scores
above, and seen clearly in qualitative analysis.

An assessment of linguistic quality8 was per-
formed alongside the DUC Responsiveness As-
sessment. This followed the same procedure de-
tailed in Section 4.5. Questions pertained to gram-
maticality, non-redundancy, referential clarity, and
structure and coherence. Grammaticality scored
4.48, non-redundancy scored 4.95, referential clar-
ity scored 4.7, and structure and coherence scored
4.53. All scores averaged between “Good” and
“Very Good”. Non-redundancy is nearly perfect,
likely because the summaries are too short for
redundancy to be of issue. The referential clar-
ity scored high as well, which can be associated
with the performance of the self-attention over the
words already decoded.

7 Conclusion

The effect of modern attention mechanisms as ap-
plied to sentence summarization has been tested
and analyzed. We have shown that a self-attentive
encoder-decoder can perform the sentence sum-
marization task without the use of recurrence or
convolutions, which are the primary mechanisms
in state of the art summarization approaches to-
day. An inherent limitation of these existing sys-
tems is the computational cost of training associ-

8https://duc.nist.gov/duc2007/
quality-questions.txt

Figure 2: Examples of generated summaries by
the relative dot-product self-attention model.

ated with recurrence. The models presented can
be trained on the full Gigaword dataset in just 4
hours on a single GPU. Our relative dot-product
self-attention model generated the highest qual-
ity summaries among our tested models and dis-
played the ability of abstracting and reducing com-
plex dependencies. We also have shown that n-
gram evaluation using ROUGE metrics falls short
in judging the quality of abstractive summaries.
The VERT metric has been proposed as an alter-
native to evaluate future automatic summarization
based on the premise that an abstractive summary
should be judged in an abstractive manner.
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