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Abstract

The significance of the meaningful in-
formation about the psycho-physiological
state, contained within infant cries is
well established, but the computational
task of cry-cause recognition is yet to
gain attention. In this work, features
F0 contour, sub-band spectral energy and
MFCCs using the data-set ICSD2, col-
lected especially for this study are exam-
ined for crying characterization. Recog-
nition task is approached using k-nearest
neighbour (k-NN), feed-forward (FFNN)
and convolutional neural networks (CNN).
A 55 dimensional feature-set is assessed
for classification using nearest neighbour
and feed-forward neural network. FFNN
based classification outperforms not only
the primary classifications evaluated using
manual forward sequential feature selec-
tion, but also several State-of-the-Art re-
sults for similar tasks. Also examined is
the performance of a convolutional neu-
ral network (CNN) towards learning suit-
able feature representations using MFCC
and delta MFCC as inputs. Although with
limited evaluation and output, insights to-
wards effectively utilising taller filters and
data-augmentation for a data-set with an
imbalanced category-wise count are ob-
tained. The results provide evidence in
favour of MFCC based functionals along-
with feed-forward neural network based
cause recognition. The discussion pro-
vided in this work can possibly provide
motivation towards tasks related to infant
cry-cause recognition or acoustic feature
representation learning using deeper net-
works.

1 Introduction

The advent of the research on paralinguistic
speech analysis is traced back to the middle of
the 20th century, notably through the statements
given by Crystal, that defined it as “vocal factors
involved in paralanguage” (Crystal, 1974). Al-
though, with no formal connection to the linguis-
tics, the potential of the meaningful information
contained within the acoustics of an infant cry, has
already started convincing medical practitioners,
parents, care-givers, etc., about its diagnostic im-
portance.

Major work in Paralinguistic research, for in-
stance academic challenges are being directed to-
wards objectives like speech emotion recogni-
tion (Schuller et al., a,b). Although these efforts
streamline state specific discoveries for paralin-
guistic, but as an outcome they lead to limited
growth for understanding relevant techniques and
useful resources for the applications that do not
involve linguistic information within the acoustic
signal, and hence the development remains largely
application specific. It is this aspect that the work
done in this paper attempts to address.

Tools like short-time spectrograms and cross-
correlograms have been used towards majority of
the infant cry acoustic analysis, leading to spec-
tral and inter-segmental cross-correlation analysis
in (Neustein, 2010; Petroni et al., 1994; Sharma
et al., 2017). Attempts involving Fundamental
frequency (F0) contour by implementing Welch’s
method, autocorrelation, FFT, and modZFF, have
been observed to be crucial for characterising ex-
citation source within an infant cry in (Petroni
et al., 1994; Cohen and Lavner, 2012; Sharma
et al., 2017; Sharma and Mittal, 2017b; Yegna-
narayana and Murty, 2009; Mittal, 2016b,a). ZFF
along-with dominant frequency analysis is used to
analyse shouted speech in (Mittal and Vuppala,20



2016; Mittal and Yegnanarayana, 2013). Also,
evaluation of base-line features like pitch, for-
mants and MFCCs, along-with popular classifi-
cation techniques like SVM and k-NN, includ-
ing the neural network based classifiers like feed-
forward and convolutional neural networks as well
in (Galaviz and Garcı́a, 2005; Reyes-Galaviz et al.,
2008; Sahak et al., 2010; Zabidi et al., 2010; Co-
hen and Lavner, 2012; Lavner et al., 2016), have
resulted in insightful observations.

Spectral information from higher order cumu-
lants, along-with base-line features like MFCC,
LPC and PLP, was observed to elucidate the non-
linearity towards classifying Normal vs. Patho-
logical cry sounds in (Chittora and Patil, 2015).
Authors in (Orozco et al.) attempted to classify
infant cries into Hunger or Pain, by individually
evaluating linear prediction coefficients and sig-
nal intensity using a feed-forward neural network.
A duration-thresholding based pre-processing step
of cry sound segmentation along-with sequen-
tial forward floating feature selection approach,
was taken up in (Chang et al., 2017) and com-
pared with the results from (Abdulaziz and Ah-
mad, 2010) for evaluating spectro-temporal fea-
tures for a dataset with 490 cry samples, towards
cry-cause classification as Hunger, Lack of sleep
or Pain.

A pressing concern in this field is the short-
age of publicly available datasets of infant cries
for categorical studies. Another direct challenge
posed is about the disparateness of the categories
being studied. The work has been done for a
variety of causes ranging from pathologies like
Asthma to disorders like Asphyxia, Ventricular
septal defect (VSD), Upper respiratory tract in-
fection (URTI), etc., in (Wahid et al., 2016; Chit-
tora and Patil, 2015). This diversifies not only
the utility of the characteristic feature-set, but also
the understanding about the approaches suitable
for a class specific study. All these challenges
are resonated with the limitations imposed by the
unavailability of infant cry dataset in public do-
main. It is this lack of understanding and common
frameworks with respect to the resources and tech-
niques, that the fundamental approach adopted
in this work and the observations made thereof,
towards infant cry acoustic analysis and cause
recognition, is motivated from.

The rest of the paper is organised as follows.
Signal processing methods used and features ex-

amined are stated in Section 2. Infant cry corpus
collection and organization is discussed in Section
3. This is followed by the description of the exper-
imental setup in Section 4. Acoustic analysis of
the infant cries is described in Section 5. The ob-
servations related to the evaluation of crying cause
classification are stated in Section 6. Section 7
provides a detailed account of the key results ob-
tained. Finally, the paper is summarized and con-
cluded in Section 8.

2 Signal processing methods used and
Features examined

2.1 Signal processing methods used

1. Short-time Fourier analysis: Frequency do-
main processing of a signal, considered
for short-time durations (Oppenheim et al.,
1989).

2. Autocorrelation: Provides a measure of self-
similarity over time (Haykin, 1989).

3. Filter-bank spectral analysis: Critical fre-
quency band based spectral content analy-
sis (Bourlard and Dupont, 1997) and (Lyons,
2012).

4. Cepstral analysis: Obtaining Cepstral coeffi-
cients as features representing speech sound
production system characteristics in que-
frency domain (Chang et al., 2017).

2.2 Features explored

1. F0 contour: Functionals like Standard-
deviation (devF0) and Mean (meanF0) of
F0 contour are computed at the cry segment
level.

2. Sub-band spectral energy (SSE): The ratios
between the 4th sub-band to 1st and 2nd sub-
bands, i.e., (εX4:1) and (εX4:2), commonly
denoted as SSEr are computed.

3. Mel frequency cepstral coefficients: A to-
tal of 52 coefficients, including MFCCs
(MFCC), delta MFCCs (∆MFCC), and
their Standard-deviations, (MFCCdev) and
(∆MFCCdev) respectively, with 13 coeffi-
cients each are computed.

3 Infant Cry Corpus (IIIT-S ICSD2)

An infant cry dataset IIIT-S ICSD2, having a to-
tal of 104 subjects (50 Male and 54 Female), age
ranges for whom lie between 2 days and 6 years21



Figure 1: Spectrogram for Pain cry, depicting
arched excitation contour (Marked by arrows) and
consistently high spectral energy (Marked by rect-
angle box).

is collected for this study. From a total of 7 cate-
gories noted for the data-collection at the clinic, 4
are specifically focussed upon, for acoustic analy-
sis and cause classification. Amongst these, Pain
and Stranger’s anxiety are the most prominent rea-
sons that induced crying during the hospital vis-
its for majority of infants. Whereas, Discom-
fort and Environmental change were other impor-
tant cry categories for which the data is collected.
On-going and historical medical conditions, par-
ent’s inputs and infant’s present health status as
adjudicated by the doctor, formed the basis of
ground truth categorization. Due to the category-
wise constraint of cry sample count in the data
set, these categories are aggregated to form higher
level classes, Severe and Non-severe, for the study
in this work. Further corpus details can be referred
from (Sharma and Mittal, 2017a).

4 Experimental setup

4.1 Acoustic Analysis

Cry signals are recorded at 48 kHz and 24 bit cod-
ing rate. The short-time analysis of the cry signal
is done by considering Frame size of 30 ms and
frame shift of 10 ms. Denoising of the computed
fundamental period is done using median filtering
of order 5. For filter-bank analysis, 6 sub-bands
covering the successive spectrum ranges of 1 kHz
each, starting from 100 Hz up-to 6 kHz are con-
sidered. The order of the Mel scale cepstrum is set
as 13. Feature extraction and conversion into vec-
tor format is done using MATLAB R2017a and
Python routines.

4.2 Cause Classification

Classifier models are implemented using statis-
tics and machine learning, parallel processing and
neural network toolboxes, in MATLAB R2017a.

Figure 2: Spectrogram for cry due to Environmen-
tal change, depicting monotonous excitation con-
tour (Marked by arrows) and lesser spectral energy
in higher spectrum (Marked by rectangle box).

The neuron count in the Hidden layer of the
Feed-forward neural network has been empirically
evaluated, based upon the following conventions
(Heaton, 2008),

• Inc < Hnc < Onc,
• Hnc = 2

3(Inc +Onc) and
• Hnc < 2∗Inc.

where, Inc, Hnc and Onc are the neuron count for
input, hidden and output layers respectively. Con-
volution neural network architecture based eval-
uation is done using Keras routines with Tensor
flow as backend in IPython environment. Adopted
from the task on environmental sounds classifica-
tion (ESC) (Salamon and Bello, 2017), the CNN
has 4 convolution layers, each followed by a relu
activation layer, with max-pooling of size (2,2)
and dropout after every set of 2 conv-activation
layers, dropout being 15 and 20 % respectively.
Next is a fully connected layer with 256 neurons
with relu activation and a 50 % dropout. Finally
the output layer neurons are activated using soft-
max function.

5 Acoustic analysis of Infant Cry

The primary experiments are focussed upon vali-
dating the acoustic characteristics observed from
the cry spectrograms, as shown in Fig. 1 and 2.
It is observed that the cry signals having major-
ity of the cries with relatively less deviation of
the F0 contour and more stability (Fig. 2), are
mostly observed for the causes that are less se-
vere in nature, as can be observed from the F0

contour plotted in the Fig. 4 (sub-plot (b)) for an
Environmental change case. Cries due to Discom-
fort and Environmental change fall under this cat-
egory. Whereas, the presence of arc-shaped exci-
tation contours within a cry event as depicted in22
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Figure 3: Comparison of (a) input signal, (b) F0 contour (using autocorrelation), (c) Sub-band spectral
energy ratio of 4th to 2nd sub-bands and (d) ∆ MFCCdev for Pain cry.
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Figure 4: Comparison of (a) input signal, (b) F0 contour (using autocorrelation), (c) Sub-band spectral
energy ratio of 4th to 2nd sub-bands and (d) ∆ MFCCdev for cries due to for Environmental change.

Fig. 1 indicate causes that are severe in nature.
Cries due to Pain and Stranger’s anxiety exhibit
such behaviour, which can be validated from the
F0 contour of a Pain cry, as shown in Fig. 3 (sub-
plot (b)).

For the Pain category, the spectral intensity ap-
pears to be more across the spectrum, as com-
pared to that of the Environmental change. This
effect can also be observed from the cases de-
picted in Fig. 1 and 2, for Pain and Environmen-
tal change respectively, wherein the spectral inten-

sity is consistently observed to be either equiva-
lent or more, for higher sub-bands as compared
to the lower ones for severe categories as that for
pain. Whereas, the same is observed to fade away
for the core cry segment progressions for the non-
severe cases like Environmental change. The pres-
ence of higher spectral intensity within the 4th

filter-bank for pain category as observed from the
experiments, is also demonstrated by comparing
the filter-bank energy ratios of 4th sub-band to 1st

and 2nd sub-bands, for 85 Severe and 30 Non-
23



Figure 5: Confusion matrix for the 2 layered Feed-
forward neural net based classification, with 90
hidden neurons.

sever cases. The average ratios for Severe cate-
gory are found to be higher, at 6 and 39 respec-
tively, whereas they are observed to be much lower
at 2 and 12 for Non-severe categories. The de-
crease in the spectral intensity for the cries from
the latter set of categories with respect to the sub-
band spectral energies could possibly be attributed
to the effect of hypo-phonation induced from the
voice effects like soft shrill. Sub-band spectral en-
ergy ratios, plotted for the cases for Pain and Envi-
ronmental change cries, as shown in Fig. 3 and 4
(sub-plots (c)) respectively, with the average ratio
value for the former category being significantly
higher than that for the latter, distinctly character-
ize cries as either Severe or Non-severe.

Although, infants are hardly capable of mim-
icking the linguistic vocalizations being actively
used in their surroundings in their infancy, they
do develop profound effects of paralinguistic like
intonations that characterize their cultural back-
grounds (Mampe et al., 2009). In an attempt
to capture such time-varying spectral characteris-
tics, MFCCs are found to divulge the cause spe-
cific characteristics effectively when subjected to
distinctive classification. The qualitative differ-
ence can be easily observed by comparing the
∆MFCCdev plots (Fig. 3 and 4, sub-plots (d))
for the cases from Pain and Environmental change
categories, the average value of which is observed
to be higher for Severe as compared to that for

Non-severe cases. This implies greater modula-
tions within vocalizations in the core crying re-
gions of the bouts, captured by the dynamic func-
tionals modelling the time-varying system charac-
teristics.

6 Crying cause classification

6.1 Using conventional machine learning
techniques

The cry-cause recognition by classification is first
attempted using technique k-nearest neighbour. It
is observed that meanF0 , devF0 , SSEr, are not
capable enough of giving good overall accuracy,
without compromising on true prediction for class
Non-severe. Whereas, MFCC features are ob-
served to be facilitating predictions with at least
30 % true positive rates for class Non-severe with
∆MFCCdev giving the highest rate of 34 %,
which is significantly greater than the performance
for the rest of the features, without using any en-
semble classification technique. ∆MFCCdev is
found to be successful in facilitating decent clas-
sification for cry sounds as either Severe or Non-
severe, with an overall accuracy of 80 % and true
positive classification rates of 96 % and 34 % for
both classes respectively, with Cosine k-NN based
classification. It is important to note that this per-
formance is obtained while evaluating the data-
set with significantly skewed instance distribution,
dominated by Severe class instances. This effect
is taken into consideration by evaluating ensem-
ble techniques like RUS boosting that takes such
imbalance into consideration while evaluating the
classification, which resulted in a base-line per-
formance of 65 %. In addition to this, the prob-
lem of instance imbalance is further addressed by
performing data-augmentation for audio data-set,
while evaluating CNN based classification, which
is discussed in further sub-sections.

6.2 Using Feed-forward neural network
Neural network based classification performs with
average overall accuracy of 87.64 % with accept-
able true positive prediction rates of 92.96 % and
68.68 % for the respective classes. Empirical eval-
uation elucidated that with the increasing no. of
hidden layer neuron count and epochs, for which
the neural network converges, the cross entropy er-
ror reduces. Neural network with 90 Neurons in24



Table 1: Comparison of CNN based classification performances; (a) Configurations detail format:
height×width (kernel), n1-n2-n3-n4 (No. of filters in 4 layers) and (b) Datasets (Augmented).

(a) Configurations (b) Datasets (c) Accuracy (%) (c) Val. (%) (d) Test (%)

2×2, 32-32-64-64
Cry-3 57 68 63

ESC-12 49 66 62

4×3, 12-12-16-16 Cry-3 62 60 65

Average 56 65 63

Table 2: Comparison of best results of several State-of-the-Art for 2/Similar class and the Proposed
(3rd observation) approach; Classifier abbreviations (c) Feed-forward neural network (FFNN), Scaled
conjugate gradient (SCG) and Radial basis function network (RBFN); References in (a): 1(Orozco et al.),
2,5(Wahid et al., 2016), 3(Abdulaziz and Ahmad, 2010) and 4(Ours).

(a) Database (No. of infants) (b) Features (c) Classifier (d) Accuracy (%)

47 Hunger, 47 Pain1 LPC, Intensity FFNN (SCG) 74.70

350 Hunger, 192 Pain2 MFCC, LPCC, Dynamics RBFN 86.54

88 Pain, 88 Non-Pain3 MFCC, LPCC FFNN (SCG) 91.43

85 Severe, 30 Non-severe4 Pitch, SSE, MFCC, Dynamics FFNN (SCG) 93.90
879 Deaf, 157 Normal5 MFCC, LPCC, Dynamics RBFN 99.42

the hidden layer outperformed all other configu-
rations converging at 35th epoch, giving 93.9 %
accuracy rate, with 95.3 % and 90 % as true posi-
tive rates for the respective classes, the confusion
matrix for which can be observed from Fig. 5.

6.3 Using convolutional neural network
(CNN)

Primary objective of evaluating a CNN is to
examine the spatial pattern recognition capabil-
ity along-with popular data-augmentation tech-
nique, while addressing the concerns of imbal-
anced dataset, for the task of infant cry-cause
recognition. The original data sub-set is aug-
mented 4 times using techniques like adding white
noise, shifting the sound, followed by stretching
using the factors 0.8 and 1.2. Also evaluated is the
ESC-10 dataset (Piczak, 2015), to examine feature
learning towards robust inter-class classification.
Main data-sets evaluated are Cry-3 (600), having
Normal (200), Severe (200) and Non-severe (200)
cry instances with 50 min. of recordings, and
ESC-12 (2400) with Cry-3 instances along-with
9 additional environmental sound classes (210
min.).

Classification without any data-augmentation
of-course resulted in poor performance with 34 %
test accuracy. Data-augmentation helped increase

the performance by approx. 30 %, which is signif-
icant. The key performances from the experimen-
tation can be observed from the Table. 1, with con-
figuration details specified as {height×width (ker-
nel), n1-n2-n3-n4 (No. of filters in 4 layers)} and
augmented data-sets. Second observation having
tall filters with dimensions 4x3 and No. of filters
as 12, 12, 16 and 16, with the Cry-3 (augmented)
dataset, giving an overall accuracy of 62 % with 60
% validation and 65 % test accuracy outperforms
other similar evaluations.

7 Results and Discussion

The results from feed-forward neural network are
compared with some popular State-of-the-Art ap-
proaches (Table 2). With the available set of re-
sources for cry analysis, a simple approach to ob-
serve and classify the infant cries as either Se-
vere or Non-severe in this work, establishes perfor-
mance up-to 93.9 %, outperforming conventional
approaches and several similar/2-class classifica-
tion attempts made earlier.

CNN based results do not produce optimal per-
formance results, as against the ones already re-
ported in (Zabidi et al., 2017), while significant
fine-tuning of network hyper-parameters still be-
ing required with the current setup. It does give
insights regarding the efficacy of data augmenta-25



tion for such scenarios, and using small but taller
filters, that capture both the localized and spec-
tral acoustic patterns, relevant in case of infant cry
sounds analogous to the additional effect of tem-
poral progression of speech utterances too.

8 Summary and Conclusion

A multi-class dataset of infant cries is used to-
wards the infant cry-cause analysis and classifi-
cation. Excitation source and production system
characterising features are evaluated. It is estab-
lished, that F0 contour, sub-band spectral energy
and MFCCs can distinctly characterize cries w.r.t.
different causes and severity.

The significant differences in the average pitch,
excitation contour patterns and spectral intensity
variations across the frequency spectrum and the
filter banks thereof, all for different cry-causes un-
der consideration is established. Non-neural net-
work based classifications yield ≈ 50 % true posi-
tive rates, which provided baseline for the current
work. Whereas, MFCCs and related derivatives
have shown promising performances with an av-
erage classification accuracy of 76.9 %, and also
the highest accuracy of 80 % for ∆ MFCCdev,
suggesting the utility of the time-varying devia-
tion in the rate of change of the system character-
istics represented by theMFCC coefficients. The
required non-linearity is observed to be modelled
best by the feed-forward neural networks with ac-
curacy up-to 93.9 %. Convolutional neural net-
works are observed to learn discriminative feature
representations that helped provide improvement
upon the initial baseline obtained.

The qualitative analysis of the cry acoustics
led to several observable patterns that can be re-
fined using better cry signal processing. Such pat-
terns are also significantly being explored within
the speech recognition community that is in-
volved with utilizing the localized spatial pattern
recognition using the convolutional neural net-
works, but primarily towards the task of automatic
speech recognition or speech emotion recognition.
Acoustic signal like cry, which is devoid of any
linguistic content but full of unconventional non-
linguistic utterances, can also be investigated us-
ing such techniques.

Acknowledgments

The authors are thankful to Dr. Nizam (M.B.B.S-
DCH), Dr. Bhavya (M.D.-Ped.) and Dr. Venkat

(M.D.-Ped.), the nursing staff of Pranaam Hospi-
tal, Madinaguda, Hyderabad, and parents of the
infants for supporting in collection of the cry sam-
ples needed for the study.

References
Y. Abdulaziz and S. M. S. Ahmad. 2010. Infant cry

recognition system: A comparison of system perfor-
mance based on mel frequency and linear prediction
cepstral coefficients. In 2010 International Confer-
ence on Information Retrieval Knowledge Manage-
ment (CAMP), pages 260–263.
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