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Abstract

Most modern neural machine translation (NMT) systems
rely on presegmented inputs. Segmentation granularity im-
portantly determines the input and output sequence lengths,
hence the modeling depth, and source and target vocabu-
laries, which in turn determine model size, computational
costs of softmax normalization, and handling of out-of-
vocabulary words. However, the current practice is to use
static, heuristic-based segmentations that are fixed before
NMT training. This begs the question whether the chosen
segmentation is optimal for the translation task. To over-
come suboptimal segmentation choices, we present an algo-
rithm for dynamic segmentation, that is trainable end-to-end
and driven by the NMT objective. In an evaluation on four
translation tasks we found that, given the freedom to navi-
gate between different segmentation levels, the model prefers
to operate on (almost) character level, providing support for
purely character-level NMT models from a novel angle.

1. Introduction
Segmentation of input sequences is an essential preprocess-
ing step for neural machine translation (NMT) and has been
found to have a high positive impact on translation quality in
recent WMT shared task evaluations [1, 2]. This success can
be explained statistically, since shorter segments are benefi-
cial for reducing sparsity: They lower the type-to-token ratio,
decrease the number of out-of-vocabulary (OOV) tokens and
singletons, which improves the coverage of unseen inputs.

Two subword segmentation methods are presently the
state-of-the-art in NMT: the byte-pair encoding (BPE), that
starts with a dictionary of single characters and iteratively
creates a new entry from the two currently most frequent en-
tries [3, 4], and a similar wordpiece (WP) model [5].

While being empirically more successful than word-
based NMT, both BPE and WP are preprocessing heuristics,
they do not account for the translation task or the language
pairs at hand (unless applied to both sides jointly), and re-
quire additional preprocessing for languages that lack ex-
plicit word separation in writing. Being used in a pipeline
fashion, they make it impossible for an NMT system to re-
segment an unfavorably presplit input and require consistent
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application of the same segmentation model during testing,
which adds an integration overhead and contributes to the
‘pipeline jungles’ in production environments [6].

On the other extreme from word-based NMT models lie
purely character models. Their advantages are smaller vo-
cabularies, thus smaller embedding and output layers, allow-
ing for more learning iterations within a training time budget
to improve generalization [7], and no preprocessing require-
ments. At the same time, longer input sequences aggravate
known optimization problems with very large depths of time-
unrolled RNNs [8] and may require additional memory for
tracking gradients along the unrolling steps.

In this work1, we pose the following question: what
would the input segmentations look like if the NMT
model could decide on them dynamically? Instead of
heuristically committing to a fixed (sub)word- or character-
segmentation level prior to NMT training, this would allow
segmentation for each input to be driven by the training ob-
jective and avoid solving the trade-offs of different levels
by trial and error. To answer this question, we endow an
NMT model with the capacity of adaptive segmentation by
replacing the conventional lookup embedding layer with a
‘smart embedding’ layer that sequentially reads input char-
acters and dynamically decides to group a block of them
into an output embedding vector, feeding it to the upstream
NMT encoder before continuing with the next block (with
an optional reverse process on the target side). To signal
that a block of characters, encoded as an embedding vec-
tor, is ready to be fed upstream, we use accumulated val-
ues of a scalar halting unit [9], which learns when to output
this block’s embedding. It simultaneously affects weight-
ing probabilities of intermediate output vectors that com-
pose the output embedding. Thanks to this weighting, our
model is fully differentiable and can be trained end-to-end.
Similarly to BPE, it has a hyper-parameter that influences
segmentation granularity, but in contrast to BPE this hyper-
parameter does not affect the model size. While we eval-
uate our on-the-fly segmentation algorithm on RNN-based
NMT systems, it is transferable to other NMT architectures
(CNN [10] or Transformer [11]), since it only replaces the
input embedding layer. Empirically, we find a strong pref-
erence of such NMT models to operate on segments that are

1Extended report: https://arxiv.org/abs/1810.01480.
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only one to a few characters long. This turns out to be a rea-
sonable choice, as in our experiments character-level NMT
systems of smaller or comparable size were able to outper-
form word- and subword-based systems, which corroborates
results of [12, 13]. Given this finding and the unique ad-
vantages of character-level processing (no pipelining, no to-
kenization, no additional hyperparameters, tiny vocabulary
and memory, and robustness to spelling errors [14]), we
hope that character-level NMT, and in general character-level
sequence-to-sequence learning, will receive more attention
from researchers.

Note that, although our character-based models outper-
form (sub)word-based ones with similar architectures on
some datasets, we are not seeking to establish a new state-of-
the-art in NMT with our model. Our goal is to isolate the ef-
fects of segmentation on quality by introducing a flexibility-
enhancing research tool. Therefore, in the comparisons be-
tween (sub)word- and character-based models we purposely
avoided introducing changes to our baseline RNN NMT ar-
chitecture beyond upgrading the embedding layer.

2. Related Work
To tackle the OOV problem in word-level models, [15] pro-
posed a hybrid model that composes unknown words from
characters both on encoder and decoder side. While their ap-
proach relies on given word boundaries, they report a purely
character-based baseline performing as well as a word-based
model with unknown word replacement, but taking 3 months
to train, which seems to have cooled off the NMT commu-
nity in investigating fully character-based models as an alter-
native to (sub)word-based ones. Unlike [15], we found that
despite the training speed being slower than for (sub)word
vocabularies, it is possible to train reasonable character-level
models within a few weeks. To combine the best of both
worlds, [16] proposed hierarchical en-/decoders that receive
inputs on both word- and character-level. The encoder learns
a weighted recurrent representation of each word’s charac-
ters and the decoder receives the previous target word and
predicts characters until a delimiter is produced. Similar to
our work, they find improvements over BPE models. The
idea to learn composite representations of blocks of charac-
ters is similar to ours, but their approach requires given word
boundaries, which our model learns on-the-fly. [12] com-
bined a standard subword-level encoder with a two-layer, hi-
erarchical character-level decoder. The decoder has gating
units that regulate the influence of the lower-level layer to
the higher-level one, hence fulfilling a similar purpose as our
halting unit. This model outperforms a subword-level NMT
system, and achieves state-of-the-art on a subset of WMT
evaluation tasks. While not requiring explicit segmentation
on the target side, the model still relies on given source seg-
mentations. Finally, [14] proposed a fully character-level
NMT model. They mainly address training speed, which [15]
identified as a problem, and introduce a low-level convolu-
tional layer over character embeddings to extract information

from variable-length character n-grams for higher-level pro-
cessing with standard RNN layers. Thus, overlapping seg-
ments are modelled with a length depending on the filters.

Perhaps closest to our work is [13], where each layer of a
hierarchical RNN encoder is updated at different rates, with
the first layer modelling character-level structures, the fol-
lowing modelling sub(word)-level structures. They introduce
a binary boundary detector, similar to our halting unit, that
triggers feeding of a representation to the next level, so that
latent hierarchical structures without explicit boundary infor-
mation are learnt. Unlike our fully-differentiable model, such
discrete decisions of the boundary detector prohibit end-to-
end differentiability, forcing a recourse to the biased straight-
through estimator [17]. On the other hand, while our model
relies on a to-be-tuned computation time penalty, [13] do not
impose constraints on the number of boundaries.

3. Jointly Learning to Segment and Translate
Instead of committing to a single segmentation before NMT
model training, we propose to learn the segmentation-
governing parameters along with the usual network param-
eters in a end-to-end differentiable manner. With this ap-
proach, we get rid of pipelining and pre-/postprocessing,
and can adaptively segment arbitrary inputs we encounter
during training or testing. Our segmentations are context-
dependent, i.e. the same substring can be segmented into dif-
ferent parts in different contexts. Being able to smoothly
interpolate between word-based and character-based models
we allow the model to find a sweet spot in between.

We extend the Adaptive Computation Time (ACT)
paradigm [9], where a general RNN model is augmented
with a scalar halting unit that decides how many recurrent
computations are spent on each input. For segmentation, we
use the halting unit to decide how many inputs (characters)
a segment consists of. The output of the ACT module can
thus be thought of as an ‘embedding’ vector for a segment
that replaces the classic lookup embedding for (sub)words in
standard NMT models. While our model can in principle use
larger units as elementary inputs, we will focus on charac-
ter inputs to be able to model the composition of arbitrary
segments. That means that we only add a small amount of
parameters to a basic character-based model, but explicitly
model higher-level merges of characters into subwords.

3.1. ACT for Dynamic Depth

Here we summarize the ACT model [9]. It is applicable to
any recurrent architecture that transforms an input sequence
x = (x1, . . . , xT ) into outputs o = (ō1, . . . , ōT ) via com-
puting a sequence of states s = (s1, . . . , sT ) through a state
transition function S on an embedded input Ext and a linear
output projection defined by matrix Wo and bias bo:

st = S(st−1, Ext), ot = Wost + bo (1)

Instead of stacking multiple RNN layers in S to achieve
increased complexity of an RNN network, the ACT model
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Figure 1: Diagram of the ACT-ENC encoder. Note the dif-
ferences to the original ACT model: An input is here read on
every internal recurrent iteration (gray arrows) and the halt-
ing unit (red stop sign) is repurposed to trigger feeding of
an encoded embedding vector of a block of characters to the
upstream NMT layers.

dynamically decides on the number of necessary recurrent
steps (layers) for every input xt. This saves computation on
easy inputs, while still being able to use all of the processing
power on hard inputs before emitting outputs. Concretely, an
ACT cell performs an arbitrary number of internal recurrent
applications of S for each input xt:

snt =

{
S(s̄t−1, Ext), if n = 1

S(sn−1
t , Ext), otherwise

(2)

The total number of internal steps is N(t) = min{n′ :∑n′

n=1 h
n
t ≥ 1− ǫ}, where ǫ ≪ 1 and hn

t is the scalar output
of sigmoid halting unit,

hn
t = σ(Whs

n
t + bh). (3)

Once halted, the final output ōt and state s̄t (which is fed to
the next ACT step in (2)) are computed as weighted means
of intermediate outputs and states:

s̄t =

N(t)∑

n=1

pnt s
n
t , ōt =

N(t)∑

n=1

pnt o
n
t (4)

where probabilities pnt are defined as

pnt =

{
R(t), if n = N(t)

hn
t , otherwise

(5)

and remainders R(t) = 1−∑N(t)−1
n′=1 hn′

t . Finally, to prevent
the network from pondering on an input for too long, the
remainder R(t) is added as a penalty to the RNN training
loss (usually cross-entropy (XENT)) with a weight τ :

LACT = LXENT + τR(t). (6)

Thanks to (4), the model is deterministic and differentiable.

3.2. ACT for Dynamic Segmentation

We now describe how to use the ACT paradigm to enhance
an encoder for dynamic segmentation on the source side
(ACT-ENC). We reuse the idea of halting units, mean field
updates and τ -penalized training objective, but instead of
learning how much computation is needed for each atomic
input, we learn how much computation to allow for an ag-

gregation of atomic inputs, i.e. one segment.
The input to an ACT-ENC cell is a sequence of one-hot-

encoded characters x = (x1, . . . , xTx). The ACT-ENC, de-
picted in Figure 1, receives one input xt at a time and de-
cides whether to halt or not. In the case of no halting, the cell
proceeds reading more inputs; if it halts, it produces an out-
put ‘embedding’ ō of a block of characters read so far, and
the cell resets for reading the next block. The sequence of
the output embeddings o = (ō1, . . . , ōTo) is then fed to up-
stream standard (possibly bidirectional) NMT encoder lay-
ers, replacing the usual, one-hot encoded, (sub)word lookup
embeddings. The length of o is variable: The more fre-
quently ACT-ENC halts, the more embeddings are gener-
ated. In extreme cases, it can generate one embedding per
input (To = Tx) or just one embedding for the full sequence
of inputs (To = 1).

Algorithm 1 ACT-ENC
Input: Weights Wo, bo,Wh, bh, transition function S , em-

beddings Esrc, inputs x = (x1, . . . , xTx), threshold ǫ.
Output: Outputs o = (ō1, . . . , ōTo), remainder R.

1: o = [ ] ⊲ empty sequence
2: R = 0, H = 0 ⊲ init remainder and halting sum
3: s̄ = 0, ō = 0, s0 = 0 ⊲ init mean state and output
4: for t = 1 . . . Tx do ⊲ loop over inputs
5: st = S(st−1, Esrc xt) ⊲ new state
6: ot = Wost + bo ⊲ new output
7: ht = σ(Whst + bh) ⊲ halting score
8: f = [[H + ht ≥ 1− ǫ]] ⊲ halting flag
9: pt = (1− f)ht + f (1−H) ⊲ halting probability

10: H = H + ht ⊲ update halting sum
11: s̄ = s̄+ ptst, ō = ō+ ptot ⊲ mean state and output
12: R = R+ (1− f)ht ⊲ increment remainder
13: if f then
14: o = o⌢[ō] ⊲ append output
15: st = s̄ ⊲ overwrite for next step
16: s̄ = 0, ō = 0, H = 0

17: R = (1−R)/t ⊲ normalize remainder

In more detail, ACT-ENC implements the pseudocode
given in Algorithm 1. Let S(st−1, it) be any recursive com-
putation function (in this work we use GRUs) of an RNN that
receives a hidden state st−1 and an input vector it at time
step t and computes the new hidden state st. In line 5 this
function is computed on the regular previous state or, if there
was a halt in the previous step (line 13), on the mean state
vector s̄ that summarizes the states of the previous segment
(line 15, cf. (4), 1st eq.). Per-step outputs ot are computed
from the hidden states st with a feed-forward layer (line 6,
cf. (1), 2nd eq.). A sigmoid halting unit computes a halting
score in each step (line 7, cf. (3)). The halting probability
for step t is either the halting score ht or the current value
of remainder 1 − H to ensure that all halting probabilities
within one segment form a distribution (line 9, cf. (5)). ǫ
is set to a small number to allow halting after a single step.
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Whenever the model decides to halt, an output embedding ō
is computed as a weighted mean of the intermediate out-
puts of the current segment (line 14, cf. (4), 2nd eq.). The
weighted mean on the one hand serves the purpose of cir-
cumventing stochastic sampling, on the other hand can be
interpreted as a type of intra-attention summarizing the in-
termediate states and outputs of the segment. The halting
scores from each step are accumulated (line 12) to penal-
ize computation time as in (6). The hyperparameter τ here
controls the segment length: The higher its value, the more
preference will be given to smaller remainders, i.e. shorter
segments. We introduce an additional normalization by input
length (line 17), such that longer sequences will be allowed
more segments than shorter sequences. This implementation
exploits the fact that ACT-ENC outputs are weighted means
over time steps and updates them incrementally. The algo-
rithm allows efficient minibatch processing by maintaining a
halting counter that indicates which embedding each current
intermediate output in the batch contributes to. Incremental
updates of embeddings and states are achieved with masks
depending on the halting position.

4. Experiments
We reimplemented the Groundhog RNN encoder-decoder
model with attention [18] in MxNet Gluon to allow for
dynamic computation graphs. We report results on four
language directions and domains, for word-, subword-,
character-level and ACT-ENC segmentation: German-to-
English TED talks, Chinese-to-English web pages, Japanese-
to-English scientific abstracts and French-to-English news.
Table 1 gives a data overview.

The IWSLT data is split and processed as in [19]; since
it comes pretokenized and lowercased, models are evaluated
with tokenized, lowercased BLEU (using sacrebleu [20])
and chrF scores on character bigrams [21]. For WMT, we
used the 2014 dataset prepared for [18], additionally filtering
the training data to include only sequences of a lengths 1
to 60, and models are evaluated with cased BLEU and chrF
(sacrebleu, with the “13a” tokenizer).

The CASIA and ASPEC data are, respectively, from the
2015 China Workshop on MT (CWMT), used without pre-
processing and with sampled dev/test sets, and from the
WAT 2017 SmallNMT shared task, pretokenized with WP.
Both datasets have BPE and WP vocabularies of around 16k
for each side, and we report cased BLEU and chrF on them.

Hyperparameters. All models are trained with
Adam [22] and a learning rate of 0.0003, halved whenever
the validation score (tokenized BLEU) has not increased for

Data Domain Lang Train Dev Test

IWSLT TED talks de-en 153,352 6,970 6,750
CASIA web zh-en 1,045,000 2,500 2,500
ASPEC sci. abstracts ja-en 2,000,000 1,790 1,812
WMT news fr-en 12,075,604 6,003 3,003

Table 1: Data statistics (number of parallel sentences).

Data Model BLEU chrF Param SegLen TrainTime

IWSLT
de-en

Word 22.11 0.44 80.5M 4.66 23h
BPE 25.38 0.49 46.5M 4.09 20h
Char 22.63 0.46 13.4M 1.00 1d22h
ACT-ENC 22.67 0.46 13.5M 1.88 9d21h

CASIA
zh-en

BPE 10.59 0.37 49.9M 1.72 18h
Char 12.60 0.40 21.0M 1.00 10d6h
ACT-ENC 9.87 0.36 21.3M 1.006 3d13h

ASPEC
ja-en

WP 21.05 0.53 50.0M 2.07 4d4h
Char 22.75 0.55 15.6M 1.00 24d15h
ACT-ENC 15.82 0.46 15.6M 1.0007 15d4h

WMT
fr-en

Word 20.32 0.49 80.5M 5.19 4d9h
BPE 27.02 0.55 86.0M 4.05 3d23h
Char 24.25 0.53 14.1M 1.00 9d
ACT-ENC 13.74 0.42 14.2M 1.82 13d8h

Table 2: Results on test sets for 1-layer models, and num-
ber of parameters and average source segment lengths on dev
sets. Time to reach stopping criterion is in (d)ays and (h)ours.

3 validations. Training stopped when the learning rate has
been decreased 10 times in a row. All models use recurrent
cells of size 1,000 for the decoder, with a bidirectional en-
coder of size 500 for each direction, input and output em-
bedding of size 620, and the attention MLP of size 1,000,
all following [18]. When multiple encoders layers are used,
they are all bidirectional [23] with attention on the upper-
most layer. The ACT layer for ACT-ENC models has size 50
for IWSLT, CASIA and ASPEC, and 25 for WMT (picked
from {25, 50, 75, 100, 150}). The word-based models on
IWSLT and WMT have a vocabulary of 30k for each side,
the BPE models have separate 15k vocabularies for IWSLT
and a joint 32k vocabulary for WMT. For IWSLT, CASIA
and ASPEC all characters from the training data were in-
cluded in the vocabularies, resulting in vocabulary sizes of
117 (de) and 97 (en), 7,284 (zh) and 166 (en), and 3,212 (ja)
and 233 (en), respectively. For WMT the vocabularies in-
cluded the 400 most frequent characters on each side. Word-
and BPE-based models are trained with minibatches of size
80, character-based models with 40. The maximum sequence
length during training is 60 for word- and BPE-based mod-
els, 200 for character-based models and 150 for ACT-ENC,
to fit into available memory. τ = 1.0 delivered the highest
BLEU score for IWSLT and CASIA, τ = 0.8 for WMT and
τ = 0.7 for ASPEC. Following [9], we fixed ǫ = 0.01 in all
the experiments. During inference, we use beam-search with
a beam size of 5 and length-normalization.

Evaluation Results. Table 2 lists the results for the most
comparable, 1-layer, configuration. BPE/WP models expect-
edly outperform word-based models, however word-based
models are also outperformed by character-based models.
The picture is similar w.r.t. the chrF with even smaller rel-
ative differences. The ACT-ENC model with one unidirec-
tional ACT layer manages to match the 1-layer bidirectional
character-based model on IWSLT. But it does not reach the
results of other models on CASIA and ASPEC, which can
be explained by increased complexity of doing simultane-
ous segmentation during training on sentences longer than
the average sentence length in IWSLT. However, the main
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Data Model BLEU chrF Param SegLen TrainTime

IWSLT
de-en

Word, 4L 24.54 0.45 97.0M 4.66 1d8h
BPE, 1L 25.38 0.49 46.5M 4.09 20h
Char, 5L 28.19 0.51 26.9M 1.00 3d10h
ACT-ENC, 3L 25.10 0.49 25.6M 1.31 9d7h

CASIA
zh-en

BPE, 3L 11.01 0.38 58.9M 1.72 24h
Char, 3L 13.43 0.42 30.0M 1.00 5d6h
ACT-ENC, 2L 10.35 0.37 21.3M 1.00 10d

ASPEC
ja-en

WP, 3L 22.02 0.55 61.4M 2.07 4d2h
Char, 1L 22.75 0.55 15.6M 1.00 24d15h
ACT-ENC, 1L 15.82 0.46 15.6M 1.0007 15d4h

WMT
fr-en

Word, 2L 21.04 0.48 94.0M 5.19 4d16h
BPE, 3L 27.93 0.56 98.0M 4.05 5d3h
Char, 6L 27.23 0.55 27.6M 1.00 18d13h
ACT-ENC, 2L 14.01 0.43 21.7M 1.0001 9d10h

Table 3: Results on respective test sets after tuning the num-
ber of encoder (L)ayers (from 1 to 6) on the dev set.

finding here is that ACT-ENC recovers an almost character-
level segmentation (“SegLen” column in Table 2). On the
IWSLT dev set, the average segment length is only 1.88, with
a maximum of 5 characters per segment. For CASIA and
ASPEC domains, and with the larger datasets than IWSLT,
the ACT-ENC segmentations becomes more fine-grained:
The average segment length is, respectively, just 1.006 and
1.0007 on the dev set (max. 2 chars per segment). Given
that the character model outperforms the BPE/WP models,
it is not surprising that ACT-ENC converged to the charac-
ter segmentation. We hypothesize that ACT-ENC could not
improve over the 1-layer bidirectional character model be-
cause of complexity of identifying segments in Chinese and
Japanese, unidirectionality of its initial layer, and increased
hardness of optimization of character-based models with ex-
tra non-linearities [24], that causes earlier convergence to
poorer minima in many runs. Similarly for WMT, failing
to match the performance of the character model could be
caused by harder optimization task on particularly long sen-
tences in the WMT data, and unidirectionality of ACT-ENC.
The ACT-ENC’s segment length is 1.82 (max. 6 chars), again
close on average to a purely character segmentation.

Inspired by the ACT-ENC’s recovery of almost charac-
ter segmentation and by the competitive performance of pure
character-based models, we decided to verify if the advan-
tage of character-level processing carries over to multiple
layers. Since the character models are much smaller than
their word-/BPE-based counterparts, one should allow mul-
tiple layers (consuming the same or less memory) to make up
for the difference in number of parameters for fairer compar-
ison. This also aimed to verify whether an increased number
of non-linearities (one of ACT’s benefits [25]) plays a role.

Table 3 shows the test results after tuning the number of
bidirectional encoder layers, from 1 to 6, on dev sets. First,
we observe the modest parameter number of character mod-
els even with multiple layers, that allows them to take ad-
vantage of deeper cascades of non-linearities while staying
well below the memory budget of (sub)word-based 1-layer
models. Second, comparing to Table 2, we again confirm
the negative correlation of quality and segment length for
ACT-ENC. Finally, we discover that BPE/WP models are

outperformed by character-based models with multiple en-
coder layers, achieving gains of 2.8 BLEU points on IWSLT,
0.7 on ASPEC, and losing only 0.7 on WMT (with a minor
decrease in chrF), despite having at least 3.5 times fewer pa-
rameters. Such ranking of character- and BPE-based models
on WMT might be explained by much longer sentences in
the corpus, compared other corpora, since the ability of char-
acter and ACT-based models to cover unseen input is limited
by the maximum training sequence length limit (here 200
characters), which on WMT data crops 30.5% of sentences.

Analysis of Segmentation and Outputs. Randomly se-
lected translation examples from the IWSLT dev set and their
segmented sources are given in Table 4. In general, when
encountering rare inputs, word-based models fail by produc-
ing the unknown word token (<unk>), and the BPE-model
is able to translate only a more common part of German
compounds (e.g. ‘tiere’ → ‘animals’). The character-based
models invent words (‘altients’, ‘jes lag’) that are similar to
strings that they saw during training and the source. In a
few cases they fallback to a language-modeling regime hav-
ing attended to the first characters of a corresponding source
word: e.g., instead of translating ‘reisen’ to ‘journeys’, the
ACT-ENC model translates it to ‘rows’ (confusing ‘reisen’
to a similarly spelled German ‘reihen’), or ‘layering’ instead
of ‘shift work’ (confusing ‘schichten’ to the prefix-sharing
‘schichtarbeit’). This is confirmed when inspecting attention
scores: The model frequently attends to the correct source
word, but mainly to the first characters only. Note that
ACT-ENC segmentations are context-dependent, e.g. occur-
rences of ’tiere’ are segmented differently.

Table 5 lists the most frequent segments produced by
1-layer ACT-ENC. For IWSLT, we observe that many seg-
ments make sense statistically (frequent or rare patterns) and
linguistically to some extent: Many of the frequent seg-
ments include whitespace (itself a frequent symbol); 2-gram
segments amongst others include frequent word suffixes
(‘en’, ‘in’, ‘er’), but also frequent diphthongs (‘ei’ and ‘ie’);
3-grams start with rare characters like ‘x’ and ‘y’ or single
dashes; 4-grams combine single characters with whitespaces
and double dashes; 5-grams cover numbers, in particular,
years. Importantly, though, since the best test BLEU scores
for IWSLT were obtained by a multi-layer character-based
model, the ACT-ENC model has done a reasonable job in im-
proving over the already well-performant strategy, one char-
acter per segment, despite having only a single NMT layer.
For CASIA and ASPEC, ACT-ENC converged to a segmen-
tation even closer to pure characters: for CASIA, the most
frequent 2-grams are punctuation combined with frequent
pronoun他 or preposition的, or with the hieroglyph明 from
a common phrase ‘[smth.] shows, [that]’ (all 4-10k in train),
and parts of rare English words; for ASPEC, it is mostly the
Hiragana letter き that starts the segments. While this let-
ter also occurs as singleton (183× in the dev set, vs. 52× as
part of a learned segment), and is frequent in the training set
(239k), it is not the most frequent letter. For WMT, charac-
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Ref in social groups of animals , the juveniles always look different than the adults .

Word in groups of social animals , the children are always different from the other than the <unk>.

BPE in gruppen sozialer tiere sehen die jung@@ tiere immer anders aus als die alt@@ tiere .
in groups , in groups , the juveniles are seeing the same animals as well as the animals .

ACT-ENC in| g|ru|pp|en| s|oz|ia|le|r |ti|er|e |se|he|n |d|ie| j|un|gt|ie|re| i|m|m|er| a|nd|er|s |au|s |al|s |d|ie| a|lt|ti|er|e |.|
in groups , the juvenile seems to see the different approach than the algaes .

Char in groups of social animals , the juveniles are still in the alite of the altients .

Ref we &apos;re living in a culture of jet lag , global travel , 24-hour business , shift work .

Word we live in a civilization with <unk> , global travel , <unk> and <unk> .

BPE wir leben in einer zivilisation mit jet@@ -@@ lag , weltweiten reisen , non@@ sto@@ p-@@ business und sch@@ icht@@ arbeit .
we live in a civilization with a single , a variety of global travel , presidential labor and checking .

ACT-ENC w|ir| l|eb|en| i|n |ei|ne|r |z|iv|il|is|at|io|n |m|it| j|et|-la|g |,| w|el|tw|ei|te|n |re|is|en| ,| n|on|st|op|-bu|si|ne|ss| u|nd| s|ch|ic|ht|ar|be|it| .|
we live in a civilization with jes lag , worldwide rows , nonstop business and failing .

Char we live in a civilization with jet walk , global journeys , nonstop-business and layering

Table 4: Greedy translations from the IWSLT dev set. Explicit segmentations are given for the ACT-ENC and BPE models.

Data Len Segments

IWSLT

2 en; n ; er; d; ie; e ; ei; in; s; w . . .
3 yst; - d; xtr; - u; 100; xpe; - w; xis; - e; -ge . . .
4 – d; – w; – s; – i; – e; – u; – g; – m; – a; – k . . .
5 1965 ; 969 ,; 1987 ; 1938 ; 1621 ; 1994 ; 1985 . . .

CASIA 2 ”。; ”，; er; ”他; --; ”的; le;明，; li; ut; . . .

ASPEC 2 きる;きた;きな;きに;りん;きは;き，;きて . . .

WMT
2 e ; s ; d; t ; l; es; on; a; de; en . . .
3 übe; Rüc; rüb; öve; ürs; Köp; üsl
4 ümov; ölln; rüng; Jürg; ülle; Müsl Müni; üric; üdig; . . .

Table 5: Most frequent ACT-ENC segments.

ter 2-grams are all very frequent in the training data (8-11M
occurrences) while longer segments are very rare (max. 1k
occurrences). Longer segments all include umlauts (ü, ö),
which are atypical for French and should be treated as one
unit semantically since they are loan words or proper names.

Gating Behavior of Char-GRUs. To investigate the
reasons for success of the deep character-based encoders
and their better or on-par performance with the segment-
ing ACT-ENC model, we analyzed average activations of
GRU gates. A GRU cell computes the next state as: st =
z⊙ tanh(xtWh + (ht−1 ⊙ r)Wg)+(1−z)⊙st−1, where z
is the update gate and r the reset gate, both being outputs of
sigmoid layers receiving xt and ht−1 [26]. Taking a closer
look at the average values of these gates, we find patterns of
segmentation as depicted in Figure 2 for a 5-layer character
model. Most of the time, a whitespace character triggers a
visible change of gate behavior: Forward reset gates close
(reset) one character after a whitespace and backward reset
gates close at whitespaces and then both open at the sub-
sequent character. The update gates show similar regular-
ities, but here the average gate values are less extreme. For
longer words all gate activations progressively decay with the
length. In addition, the block-wise processing of the com-
pound ‘schreibtisch’ (German: ‘writing table’) that was cor-
rectly split into ‘schreib’ and ‘tisch’, points to decompound-
ing abilities that pure character-level models possesses be-
yond simple whitespace tokenization.

Overall, this illustrates that the recurrent gates equip pure

Figure 2: Mean activations for reset and update forward
(FW) and backward (BW) GRU gates for an IWSLT sentence
as produced by the 5-layer char model. Layers are stacked
from bottom to top. Blue: values ≃ 0, yellow: values ≃ 1.

character models with the capacity to implicitly model input
segmentations, which would explain why ACT-ENC could
not find a radically different or advantageous segmentation.

5. Summary & Conclusion
We proposed an approach to learning (dynamic and adaptive)
input segmentation for NMT based on the Adaptive Compu-
tation Time paradigm [9]. Experiments on four translations
tasks showed that our model prefers to operate closely to the
character level. This is echoed by the quantitative success of
pure character-level models (without dynamic segmentation)
and a qualitative analysis of gating mechanisms, suggesting
that our adaptive model rediscovers the segmenting capacity
already present in gated recurrent, pure character-based mod-
els. Given this and the absence of many development hurdles
with character-based models, their lower memory consump-
tion and higher robustness, the presented dynamic segmenta-
tion capacity, being primarily a diagnostic research tool, does
not seem to be necessary to be modelled explicitly. We hope
these insights can serve as justification for intensification of
research in pure character-level NMT models.
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[17] Y. Bengio, N. Léonard, and A. C. Courville, “Estimat-
ing or propagating gradients through stochastic neu-
rons for conditional computation,” in arXiv:1308.3432,
2013.

[18] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” in
ICLR, 2015.

[19] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe,
et al., “An actor-critic algorithm for sequence predic-
tion,” in ICLR, 2017.

[20] M. Post, “A call for clarity in reporting BLEU scores,”
in arXiv:1804.08771, 2018.

[21] M. Popovic, “chrF: character n-gram F-score for auto-
matic MT evaluation,” in WMT, 2015.

[22] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in ICLR, 2015.

[23] M. X. Chen, O. Firat, A. Bapna, M. Johnson,
W. Macherey, et al., “The best of both worlds: Com-
bining recent advances in neural machine translation,”
in arXiv:1804.09849, 2018.

[24] W. Ling, I. Trancoso, C. Dyer, and A. W. Black,
“Character-based neural machine translation,” in
arXiv:1511.04586, 2015.

[25] D. Fojo, V. Campos, and X. Giró-i Nieto, “Comparing
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