@inproceedings{linhares-pontes-etal-2018-predicting,
title = "Predicting the Semantic Textual Similarity with {S}iamese {CNN} and {LSTM}",
author = "Linhares Pontes, Elvys and
Huet, St{\'e}phane and
Linhares, Andr{\'e}a Carneiro and
Torres-Moreno, Juan-Manuel",
editor = "S{\'e}billot, Pascale and
Claveau, Vincent",
booktitle = "Actes de la Conf{\'e}rence TALN. Volume 1 - Articles longs, articles courts de TALN",
month = "5",
year = "2018",
address = "Rennes, France",
publisher = "ATALA",
url = "https://aclanthology.org/2018.jeptalnrecital-court.13",
pages = "311--320",
abstract = "Semantic Textual Similarity (STS) is the basis of many applications in Natural Language Processing (NLP). Our system combines convolution and recurrent neural networks to measure the semantic similarity of sentences. It uses a convolution network to take account of the local context of words and an LSTM to consider the global context of sentences. This combination of networks helps to preserve the relevant information of sentences and improves the calculation of the similarity between sentences. Our model has achieved good results and is competitive with the best state-of-the-art systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="linhares-pontes-etal-2018-predicting">
<titleInfo>
<title>Predicting the Semantic Textual Similarity with Siamese CNN and LSTM</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elvys</namePart>
<namePart type="family">Linhares Pontes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stéphane</namePart>
<namePart type="family">Huet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andréa</namePart>
<namePart type="given">Carneiro</namePart>
<namePart type="family">Linhares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan-Manuel</namePart>
<namePart type="family">Torres-Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pascale</namePart>
<namePart type="family">Sébillot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Claveau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ATALA</publisher>
<place>
<placeTerm type="text">Rennes, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semantic Textual Similarity (STS) is the basis of many applications in Natural Language Processing (NLP). Our system combines convolution and recurrent neural networks to measure the semantic similarity of sentences. It uses a convolution network to take account of the local context of words and an LSTM to consider the global context of sentences. This combination of networks helps to preserve the relevant information of sentences and improves the calculation of the similarity between sentences. Our model has achieved good results and is competitive with the best state-of-the-art systems.</abstract>
<identifier type="citekey">linhares-pontes-etal-2018-predicting</identifier>
<location>
<url>https://aclanthology.org/2018.jeptalnrecital-court.13</url>
</location>
<part>
<date>2018-5</date>
<extent unit="page">
<start>311</start>
<end>320</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting the Semantic Textual Similarity with Siamese CNN and LSTM
%A Linhares Pontes, Elvys
%A Huet, Stéphane
%A Linhares, Andréa Carneiro
%A Torres-Moreno, Juan-Manuel
%Y Sébillot, Pascale
%Y Claveau, Vincent
%S Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN
%D 2018
%8 May
%I ATALA
%C Rennes, France
%F linhares-pontes-etal-2018-predicting
%X Semantic Textual Similarity (STS) is the basis of many applications in Natural Language Processing (NLP). Our system combines convolution and recurrent neural networks to measure the semantic similarity of sentences. It uses a convolution network to take account of the local context of words and an LSTM to consider the global context of sentences. This combination of networks helps to preserve the relevant information of sentences and improves the calculation of the similarity between sentences. Our model has achieved good results and is competitive with the best state-of-the-art systems.
%U https://aclanthology.org/2018.jeptalnrecital-court.13
%P 311-320
Markdown (Informal)
[Predicting the Semantic Textual Similarity with Siamese CNN and LSTM](https://aclanthology.org/2018.jeptalnrecital-court.13) (Linhares Pontes et al., JEP/TALN/RECITAL 2018)
ACL