@inproceedings{htait-2018-adapted,
title = "Adapted Sentiment Similarity Seed Words For {F}rench Tweets{'} Polarity Classification",
author = "Htait, Amal",
editor = "S{\'e}billot, Pascale and
Claveau, Vincent",
booktitle = "Actes de la Conf{\'e}rence TALN. Volume 2 - D{\'e}monstrations, articles des Rencontres Jeunes Chercheurs, ateliers DeFT",
month = "5",
year = "2018",
address = "Rennes, France",
publisher = "ATALA",
url = "https://aclanthology.org/2018.jeptalnrecital-deft.12",
pages = "323--328",
abstract = "We present, in this paper, our contribution in DEFT 2018 task 2 : {``}Global polarity{''}, determining the overall polarity (Positive, Negative, Neutral or MixPosNeg) of tweets regarding public transport, in French language. Our system is based on a list of sentiment seed-words adapted for French public transport tweets. These seed-words are extracted from DEFT{'}s training annotated dataset, and the sentiment relations between seed-words and other terms are captured by cosine measure of their word embeddings representations, using a French language word embeddings model of 683k words. Our semi-supervised system achieved an F1-measure equals to 0.64.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="htait-2018-adapted">
<titleInfo>
<title>Adapted Sentiment Similarity Seed Words For French Tweets’ Polarity Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amal</namePart>
<namePart type="family">Htait</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Actes de la Conférence TALN. Volume 2 - Démonstrations, articles des Rencontres Jeunes Chercheurs, ateliers DeFT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pascale</namePart>
<namePart type="family">Sébillot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Claveau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ATALA</publisher>
<place>
<placeTerm type="text">Rennes, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present, in this paper, our contribution in DEFT 2018 task 2 : “Global polarity”, determining the overall polarity (Positive, Negative, Neutral or MixPosNeg) of tweets regarding public transport, in French language. Our system is based on a list of sentiment seed-words adapted for French public transport tweets. These seed-words are extracted from DEFT’s training annotated dataset, and the sentiment relations between seed-words and other terms are captured by cosine measure of their word embeddings representations, using a French language word embeddings model of 683k words. Our semi-supervised system achieved an F1-measure equals to 0.64.</abstract>
<identifier type="citekey">htait-2018-adapted</identifier>
<location>
<url>https://aclanthology.org/2018.jeptalnrecital-deft.12</url>
</location>
<part>
<date>2018-5</date>
<extent unit="page">
<start>323</start>
<end>328</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adapted Sentiment Similarity Seed Words For French Tweets’ Polarity Classification
%A Htait, Amal
%Y Sébillot, Pascale
%Y Claveau, Vincent
%S Actes de la Conférence TALN. Volume 2 - Démonstrations, articles des Rencontres Jeunes Chercheurs, ateliers DeFT
%D 2018
%8 May
%I ATALA
%C Rennes, France
%F htait-2018-adapted
%X We present, in this paper, our contribution in DEFT 2018 task 2 : “Global polarity”, determining the overall polarity (Positive, Negative, Neutral or MixPosNeg) of tweets regarding public transport, in French language. Our system is based on a list of sentiment seed-words adapted for French public transport tweets. These seed-words are extracted from DEFT’s training annotated dataset, and the sentiment relations between seed-words and other terms are captured by cosine measure of their word embeddings representations, using a French language word embeddings model of 683k words. Our semi-supervised system achieved an F1-measure equals to 0.64.
%U https://aclanthology.org/2018.jeptalnrecital-deft.12
%P 323-328
Markdown (Informal)
[Adapted Sentiment Similarity Seed Words For French Tweets’ Polarity Classification](https://aclanthology.org/2018.jeptalnrecital-deft.12) (Htait, JEP/TALN/RECITAL 2018)
ACL