@inproceedings{vial-etal-2019-sense,
title = "Sense Vocabulary Compression through the Semantic Knowledge of {W}ord{N}et for Neural Word Sense Disambiguation",
author = {Vial, Lo{\"\i}c and
Lecouteux, Benjamin and
Schwab, Didier},
editor = "Vossen, Piek and
Fellbaum, Christiane",
booktitle = "Proceedings of the 10th Global Wordnet Conference",
month = jul,
year = "2019",
address = "Wroclaw, Poland",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2019.gwc-1.14",
pages = "108--117",
abstract = "In this article, we tackle the issue of the limited quantity of manually sense annotated corpora for the task of word sense disambiguation, by exploiting the semantic relationships between senses such as synonymy, hypernymy and hyponymy, in order to compress the sense vocabulary of Princeton WordNet, and thus reduce the number of different sense tags that must be observed to disambiguate all words of the lexical database. We propose two different methods that greatly reduce the size of neural WSD models, with the benefit of improving their coverage without additional training data, and without impacting their precision. In addition to our methods, we present a WSD system which relies on pre-trained BERT word vectors in order to achieve results that significantly outperforms the state of the art on all WSD evaluation tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vial-etal-2019-sense">
<titleInfo>
<title>Sense Vocabulary Compression through the Semantic Knowledge of WordNet for Neural Word Sense Disambiguation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Vial</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Lecouteux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Didier</namePart>
<namePart type="family">Schwab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Global Wordnet Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Piek</namePart>
<namePart type="family">Vossen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christiane</namePart>
<namePart type="family">Fellbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">Wroclaw, Poland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this article, we tackle the issue of the limited quantity of manually sense annotated corpora for the task of word sense disambiguation, by exploiting the semantic relationships between senses such as synonymy, hypernymy and hyponymy, in order to compress the sense vocabulary of Princeton WordNet, and thus reduce the number of different sense tags that must be observed to disambiguate all words of the lexical database. We propose two different methods that greatly reduce the size of neural WSD models, with the benefit of improving their coverage without additional training data, and without impacting their precision. In addition to our methods, we present a WSD system which relies on pre-trained BERT word vectors in order to achieve results that significantly outperforms the state of the art on all WSD evaluation tasks.</abstract>
<identifier type="citekey">vial-etal-2019-sense</identifier>
<location>
<url>https://aclanthology.org/2019.gwc-1.14</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>108</start>
<end>117</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sense Vocabulary Compression through the Semantic Knowledge of WordNet for Neural Word Sense Disambiguation
%A Vial, Loïc
%A Lecouteux, Benjamin
%A Schwab, Didier
%Y Vossen, Piek
%Y Fellbaum, Christiane
%S Proceedings of the 10th Global Wordnet Conference
%D 2019
%8 July
%I Global Wordnet Association
%C Wroclaw, Poland
%F vial-etal-2019-sense
%X In this article, we tackle the issue of the limited quantity of manually sense annotated corpora for the task of word sense disambiguation, by exploiting the semantic relationships between senses such as synonymy, hypernymy and hyponymy, in order to compress the sense vocabulary of Princeton WordNet, and thus reduce the number of different sense tags that must be observed to disambiguate all words of the lexical database. We propose two different methods that greatly reduce the size of neural WSD models, with the benefit of improving their coverage without additional training data, and without impacting their precision. In addition to our methods, we present a WSD system which relies on pre-trained BERT word vectors in order to achieve results that significantly outperforms the state of the art on all WSD evaluation tasks.
%U https://aclanthology.org/2019.gwc-1.14
%P 108-117
Markdown (Informal)
[Sense Vocabulary Compression through the Semantic Knowledge of WordNet for Neural Word Sense Disambiguation](https://aclanthology.org/2019.gwc-1.14) (Vial et al., GWC 2019)
ACL