@inproceedings{veres-2019-visualising,
title = "Visualising {W}ord{N}et Embeddings: some preliminary results",
author = "Veres, Csaba",
editor = "Vossen, Piek and
Fellbaum, Christiane",
booktitle = "Proceedings of the 10th Global Wordnet Conference",
month = jul,
year = "2019",
address = "Wroclaw, Poland",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2019.gwc-1.20",
pages = "160--165",
abstract = "AutoExtend is a method for learning unambiguous vector embeddings for word senses. We visualise these word embeddings with t-SNE, which further compresses the vectors to the x,y plane. We show that the t-SNE co-ordinates can be used to reveal interesting semantic relations between word senses, and propose a new method that uses the simple x,y coordinates to compute semantic similarity. This can be used to propose new links and alterations to existing ones in WordNet. We plan to add this approach to the existing toolbox of methods in an attempt to understand learned semantic relations in word embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="veres-2019-visualising">
<titleInfo>
<title>Visualising WordNet Embeddings: some preliminary results</title>
</titleInfo>
<name type="personal">
<namePart type="given">Csaba</namePart>
<namePart type="family">Veres</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Global Wordnet Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Piek</namePart>
<namePart type="family">Vossen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christiane</namePart>
<namePart type="family">Fellbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">Wroclaw, Poland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>AutoExtend is a method for learning unambiguous vector embeddings for word senses. We visualise these word embeddings with t-SNE, which further compresses the vectors to the x,y plane. We show that the t-SNE co-ordinates can be used to reveal interesting semantic relations between word senses, and propose a new method that uses the simple x,y coordinates to compute semantic similarity. This can be used to propose new links and alterations to existing ones in WordNet. We plan to add this approach to the existing toolbox of methods in an attempt to understand learned semantic relations in word embeddings.</abstract>
<identifier type="citekey">veres-2019-visualising</identifier>
<location>
<url>https://aclanthology.org/2019.gwc-1.20</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>160</start>
<end>165</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Visualising WordNet Embeddings: some preliminary results
%A Veres, Csaba
%Y Vossen, Piek
%Y Fellbaum, Christiane
%S Proceedings of the 10th Global Wordnet Conference
%D 2019
%8 July
%I Global Wordnet Association
%C Wroclaw, Poland
%F veres-2019-visualising
%X AutoExtend is a method for learning unambiguous vector embeddings for word senses. We visualise these word embeddings with t-SNE, which further compresses the vectors to the x,y plane. We show that the t-SNE co-ordinates can be used to reveal interesting semantic relations between word senses, and propose a new method that uses the simple x,y coordinates to compute semantic similarity. This can be used to propose new links and alterations to existing ones in WordNet. We plan to add this approach to the existing toolbox of methods in an attempt to understand learned semantic relations in word embeddings.
%U https://aclanthology.org/2019.gwc-1.20
%P 160-165
Markdown (Informal)
[Visualising WordNet Embeddings: some preliminary results](https://aclanthology.org/2019.gwc-1.20) (Veres, GWC 2019)
ACL