@inproceedings{kamal-abulaish-2019-lstm,
title = "An {LSTM}-Based Deep Learning Approach for Detecting Self-Deprecating Sarcasm in Textual Data",
author = "Kamal, Ashraf and
Abulaish, Muhammad",
editor = "Sharma, Dipti Misra and
Bhattacharya, Pushpak",
booktitle = "Proceedings of the 16th International Conference on Natural Language Processing",
month = dec,
year = "2019",
address = "International Institute of Information Technology, Hyderabad, India",
publisher = "NLP Association of India",
url = "https://aclanthology.org/2019.icon-1.24/",
pages = "201--210",
abstract = "Self-deprecating sarcasm is a special category of sarcasm, which is nowadays popular and useful for many real-life applications, such as brand endorsement, product campaign, digital marketing, and advertisement. The self-deprecating style of campaign and marketing strategy is mainly adopted to excel brand endorsement and product sales value. In this paper, we propose an LSTM-based deep learning approach for detecting self-deprecating sarcasm in textual data. To the best of our knowledge, there is no prior work related to self-deprecating sarcasm detection using deep learning techniques. Starting with a filtering step to identify self-referential tweets, the proposed approach adopts a deep learning model using LSTM for detecting self-deprecating sarcasm. The proposed approach is evaluated over three Twitter datasets and performs significantly better in terms of precision, recall, and f-score."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kamal-abulaish-2019-lstm">
<titleInfo>
<title>An LSTM-Based Deep Learning Approach for Detecting Self-Deprecating Sarcasm in Textual Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashraf</namePart>
<namePart type="family">Kamal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="family">Abulaish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Conference on Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dipti</namePart>
<namePart type="given">Misra</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India</publisher>
<place>
<placeTerm type="text">International Institute of Information Technology, Hyderabad, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Self-deprecating sarcasm is a special category of sarcasm, which is nowadays popular and useful for many real-life applications, such as brand endorsement, product campaign, digital marketing, and advertisement. The self-deprecating style of campaign and marketing strategy is mainly adopted to excel brand endorsement and product sales value. In this paper, we propose an LSTM-based deep learning approach for detecting self-deprecating sarcasm in textual data. To the best of our knowledge, there is no prior work related to self-deprecating sarcasm detection using deep learning techniques. Starting with a filtering step to identify self-referential tweets, the proposed approach adopts a deep learning model using LSTM for detecting self-deprecating sarcasm. The proposed approach is evaluated over three Twitter datasets and performs significantly better in terms of precision, recall, and f-score.</abstract>
<identifier type="citekey">kamal-abulaish-2019-lstm</identifier>
<location>
<url>https://aclanthology.org/2019.icon-1.24/</url>
</location>
<part>
<date>2019-12</date>
<extent unit="page">
<start>201</start>
<end>210</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An LSTM-Based Deep Learning Approach for Detecting Self-Deprecating Sarcasm in Textual Data
%A Kamal, Ashraf
%A Abulaish, Muhammad
%Y Sharma, Dipti Misra
%Y Bhattacharya, Pushpak
%S Proceedings of the 16th International Conference on Natural Language Processing
%D 2019
%8 December
%I NLP Association of India
%C International Institute of Information Technology, Hyderabad, India
%F kamal-abulaish-2019-lstm
%X Self-deprecating sarcasm is a special category of sarcasm, which is nowadays popular and useful for many real-life applications, such as brand endorsement, product campaign, digital marketing, and advertisement. The self-deprecating style of campaign and marketing strategy is mainly adopted to excel brand endorsement and product sales value. In this paper, we propose an LSTM-based deep learning approach for detecting self-deprecating sarcasm in textual data. To the best of our knowledge, there is no prior work related to self-deprecating sarcasm detection using deep learning techniques. Starting with a filtering step to identify self-referential tweets, the proposed approach adopts a deep learning model using LSTM for detecting self-deprecating sarcasm. The proposed approach is evaluated over three Twitter datasets and performs significantly better in terms of precision, recall, and f-score.
%U https://aclanthology.org/2019.icon-1.24/
%P 201-210
Markdown (Informal)
[An LSTM-Based Deep Learning Approach for Detecting Self-Deprecating Sarcasm in Textual Data](https://aclanthology.org/2019.icon-1.24/) (Kamal & Abulaish, ICON 2019)
ACL