@inproceedings{montariol-etal-2019-exploring,
title = "Exploring sentence informativeness",
author = "Montariol, Syrielle and
Gar{\'\i} Soler, Aina and
Allauzen, Alexandre",
editor = "Morin, Emmanuel and
Rosset, Sophie and
Zweigenbaum, Pierre",
booktitle = "Actes de la Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume II : Articles courts",
month = "7",
year = "2019",
address = "Toulouse, France",
publisher = "ATALA",
url = "https://aclanthology.org/2019.jeptalnrecital-court.16",
pages = "303--312",
abstract = "This study is a preliminary exploration of the concept of informativeness {--}how much information a sentence gives about a word it contains{--} and its potential benefits to building quality word representations from scarce data. We propose several sentence-level classifiers to predict informativeness, and we perform a manual annotation on a set of sentences. We conclude that these two measures correspond to different notions of informativeness. However, our experiments show that using the classifiers{'} predictions to train word embeddings has an impact on embedding quality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="montariol-etal-2019-exploring">
<titleInfo>
<title>Exploring sentence informativeness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Syrielle</namePart>
<namePart type="family">Montariol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aina</namePart>
<namePart type="family">Garí Soler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Allauzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume II : Articles courts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Morin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophie</namePart>
<namePart type="family">Rosset</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Zweigenbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ATALA</publisher>
<place>
<placeTerm type="text">Toulouse, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study is a preliminary exploration of the concept of informativeness –how much information a sentence gives about a word it contains– and its potential benefits to building quality word representations from scarce data. We propose several sentence-level classifiers to predict informativeness, and we perform a manual annotation on a set of sentences. We conclude that these two measures correspond to different notions of informativeness. However, our experiments show that using the classifiers’ predictions to train word embeddings has an impact on embedding quality.</abstract>
<identifier type="citekey">montariol-etal-2019-exploring</identifier>
<location>
<url>https://aclanthology.org/2019.jeptalnrecital-court.16</url>
</location>
<part>
<date>2019-7</date>
<extent unit="page">
<start>303</start>
<end>312</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring sentence informativeness
%A Montariol, Syrielle
%A Garí Soler, Aina
%A Allauzen, Alexandre
%Y Morin, Emmanuel
%Y Rosset, Sophie
%Y Zweigenbaum, Pierre
%S Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume II : Articles courts
%D 2019
%8 July
%I ATALA
%C Toulouse, France
%F montariol-etal-2019-exploring
%X This study is a preliminary exploration of the concept of informativeness –how much information a sentence gives about a word it contains– and its potential benefits to building quality word representations from scarce data. We propose several sentence-level classifiers to predict informativeness, and we perform a manual annotation on a set of sentences. We conclude that these two measures correspond to different notions of informativeness. However, our experiments show that using the classifiers’ predictions to train word embeddings has an impact on embedding quality.
%U https://aclanthology.org/2019.jeptalnrecital-court.16
%P 303-312
Markdown (Informal)
[Exploring sentence informativeness](https://aclanthology.org/2019.jeptalnrecital-court.16) (Montariol et al., JEP/TALN/RECITAL 2019)
ACL
- Syrielle Montariol, Aina Garí Soler, and Alexandre Allauzen. 2019. Exploring sentence informativeness. In Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume II : Articles courts, pages 303–312, Toulouse, France. ATALA.