Observation de l’expérience client dans les restaurants (Mapping Reviewers’ Experience in Restaurants)

Iris Eshkol-Taravella, Hyun Jung Kang


Abstract
Ces dernières années, les recherches sur la fouille d’opinions ou l’analyse des sentiments sont menées activement dans le domaine du Traitement Automatique des Langues (TAL). De nombreuses études scientifiques portent sur l’extraction automatique des opinions positives ou négatives et de leurs cibles. Ce travail propose d’identifier automatiquement une évaluation, exprimée explicitement ou implicitement par des internautes dans le corpus d’avis tiré du Web. Six catégories d’évaluation sont proposées : opinion positive, opinion négative, opinion mixte, intention, suggestion et description. La méthode utilisée est fondée sur l’apprentissage supervisé qui tient compte des caractéristiques linguistiques de chaque catégorie retenue. L’une des difficultés que nous avons rencontrée concerne le déséquilibre entre les classes d’évaluation créées, cependant, cet obstacle a pu être surmonté dans l’apprentissage grâce aux stratégies de sur-échantillonnage et aux stratégies algorithmiques.
Anthology ID:
2019.jeptalnrecital-court.22
Volume:
Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume II : Articles courts
Month:
7
Year:
2019
Address:
Toulouse, France
Venue:
JEP/TALN/RECITAL
SIG:
Publisher:
ATALA
Note:
Pages:
361–370
Language:
French
URL:
https://aclanthology.org/2019.jeptalnrecital-court.22
DOI:
Bibkey:
Copy Citation:
PDF:
https://aclanthology.org/2019.jeptalnrecital-court.22.pdf