Apprentissage faiblement supervisé de la structure discursive (Learning discourse structure using weak supervision )

Sonia Badene, Catherine Thompson, Nicholas Asher, Jean-Pierre Lorré


Abstract
L’avènement des techniques d’apprentissage automatique profond a fait naître un besoin énorme de données d’entraînement. De telles données d’entraînement sont extrêmement coûteuses à créer, surtout lorsqu’une expertise dans le domaine est requise. L’une de ces tâches est l’apprentissage de la structure sémantique du discours, tâche très complexe avec des structures récursives avec des données éparses, mais qui est essentielle pour extraire des informations sémantiques profondes du texte. Nous décrivons nos expérimentations sur l’attachement des unités discursives pour former une structure, en utilisant le paradigme du data programming dans lequel peu ou pas d’annotations sont utilisées pour construire un ensemble de données d’entraînement “bruité”. Le corpus de dialogues utilisé illustre des contraintes à la fois linguistiques et non-linguistiques intéressantes qui doivent être apprises. Nous nous concentrons sur la structure des règles utilisées pour construire un modèle génératif et montrons la compétitivité de notre approche par rapport à l’apprentissage supervisé classique.
Anthology ID:
2019.jeptalnrecital-court.3
Volume:
Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume II : Articles courts
Month:
7
Year:
2019
Address:
Toulouse, France
Venue:
JEP/TALN/RECITAL
SIG:
Publisher:
ATALA
Note:
Pages:
175–184
Language:
French
URL:
https://aclanthology.org/2019.jeptalnrecital-court.3
DOI:
Bibkey:
Copy Citation:
PDF:
https://aclanthology.org/2019.jeptalnrecital-court.3.pdf