Apprentissage de plongements lexicaux par une approche réseaux complexes (Complex networks based word embeddings)

Victor Connes, Nicolas Dugué


Abstract
La littérature des réseaux complexes a montré la pertinence de l’étude de la langue sous forme de réseau pour différentes applications : désambiguïsation, résumé automatique, classification des langues, etc. Cette même littérature a démontré que les réseaux de co-occurrences de mots possèdent une structure de communautés latente. Nous formulons l’hypothèse que cette structuration du réseau sous forme de communautés est utile pour travailler sur la sémantique d’une langue et introduisons donc dans cet article une méthode d’apprentissage de plongements originale basée sur cette hypothèse. Cette hypothèse est cohérente avec la proximité qui existe entre la détection de communautés sur un réseau de co-occurrences et la factorisation d’une matrice de co-occurrences, méthode couramment utilisée pour l’apprentissage de plongements lexicaux. Nous décrivons notre méthode structurée en trois étapes : construction et pré-traitement du réseau, détection de la structure de communautés, construction des plongements de mots à partir de cette structure. Après avoir décrit cette nouvelle méthodologie, nous montrons la pertinence de notre approche avec des premiers résultats d’évaluation sur les tâches de catégorisation et de similarité. Enfin, nous discutons des perspectives importantes d’un tel modèle issu des réseaux complexes : les dimensions du modèle (les communautés) semblent interprétables, l’apprentissage est rapide, la construction d’un nouveau plongement est presque instantanée, et il est envisageable d’en expérimenter une version incrémentale pour travailler sur des corpus textuels temporels.
Anthology ID:
2019.jeptalnrecital-long.2
Volume:
Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume I : Articles longs
Month:
7
Year:
2019
Address:
Toulouse, France
Venue:
JEP/TALN/RECITAL
SIG:
Publisher:
ATALA
Note:
Pages:
27–38
Language:
French
URL:
https://aclanthology.org/2019.jeptalnrecital-long.2
DOI:
Bibkey:
Copy Citation:
PDF:
https://aclanthology.org/2019.jeptalnrecital-long.2.pdf