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Abstract

Fine-tuning (FT) pre-trained sentence embed-
ding models on small datasets has been shown
to have limitations. In this paper we show that
concatenating the embeddings from the pre-
trained model with those from a simple sen-
tence embedding model trained only on the tar-
get data, can improve over the performance of
FT for few-sample tasks. To this end, a linear
classifier is trained on the combined embed-
dings, either by freezing the embedding model
weights or training the classifier and embed-
ding models end-to-end. We perform evalua-
tion on seven small datasets from NLP tasks
and show that our approach with end-to-end
training outperforms FT with negligible com-
putational overhead. Further, we also show
that sophisticated combination techniques like
CCA and KCCA do not work as well in prac-
tice as concatenation. We provide theoretical
analysis to explain this empirical observation.

1 Introduction

Fine-tuning (FT) powerful pre-trained sentence em-
bedding models like BERT (Devlin et al., 2018) has
recently become the de-facto standard for down-
stream NLP tasks. Typically, FT entails jointly
learning a classifier over the pre-trained model
while tuning the weights of the latter. While FT has
been shown to improve performance on tasks like
GLUE (Wang et al., 2018) having large datasets
(QQP, MNLI, QNLI), similar trends have not been
observed on small datasets, where one would ex-
pect the maximum benefits of using a pre-trained
model. Several works (Phang et al., 2018; Garg
et al., 2019; Dodge et al., 2020; Lee et al., 2020)
have demonstrated that FT with a few target domain
samples is unstable with high variance, thereby of-
ten leading to sub-par gains. Furthermore, this
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issue has also been well documented in practice 1.
Learning with low resources has recently be-

come an active research area in NLP, and arguably
one of the most interesting scenarios for which
pre-trained models are useful (e.g., (Cherry et al.,
2019)). Many practical applications have small
datasets (e.g., in social science, medical studies,
etc), which are different from large-scale academic
benchmarks having hundreds of thousands of train-
ing samples (e.g, DBpedia (Lehmann et al., 2015),
Sogou News (Wang et al., 2008), etc). This neces-
sitates effective transfer learning approaches using
pre-trained sentence embedding models for few-
sample tasks.

In this work, we show that concatenating sen-
tence embeddings from a pre-trained model and
those from a smaller model trained solely on the
target data, can improve over the performance of
FT. Specifically, we first learn a simple sentence
embedding model on the target data. Then we con-
catenate(CAT) the embeddings from this model with
those from a pre-trained model, and train a linear
classifier on the combined representation. The lat-
ter can be done by either freezing the embedding
model weights or training the whole network (clas-
sifier plus the two embedding models) end-to-end.

We evaluate our approach on seven small
datasets from NLP tasks. Our results show that our
approach with end-to-end training can significantly
improve the prediction performance of FT, with
less than a 10% increase in the run time. Further-
more, our approach with frozen embedding models
performs better than FT for very small datasets
while reducing the run time by 30%−50%, and
without the requirement of large memory GPUs.

We also conduct evaluations of multiple tech-
niques for combining the pre-trained and domain-
specific embeddings, comparing concatenation to

1Issues numbered 265, 1211 on https://github.com/huggi
ngface/transformers/issues/
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CCA and KCCA. We observe that the simplest
approach of concatenation works best in practice.
Moreover, we provide theoretical analysis to ex-
plain this empirical observation.

Finally, our results also have implications on
the semantics learning ability of small domain-
specific models compared to large pre-trained mod-
els. While intuition dictates that a large pre-trained
model should capture the entire semantics learned
by a small domain-specific model, our results show
that there exist semantic features captured solely
by the latter and not by the former, in spite of pre-
training on billions of words. Hence combining
the embeddings can improve the performance of
directly FT the pre-trained model.
Related Work Recently, several pre-trained mod-
els have been studied, of which some provide ex-
plicit sentence embeddings (Conneau et al., 2017;
Subramanian et al., 2018), while others provide
implicit ones (Howard and Ruder, 2018; Radford
et al., 2018). Peters et al. (2019) compare the per-
formance of feature extraction (by freezing the
pre-trained weights) and FT. There exists other
more sophisticated transferring methods, but they
are typically much more expensive or complicated.
For example, Xu et al. (2019) “post-train” the pre-
trained model on the target dataset, Houlsby et al.
(2019) inject specifically designed new adapter lay-
ers, Arase and Tsujii (2019) inject phrasal para-
phrase relations into BERT, Sun et al. (2019) use
multi-task FT, and Wang et al. (2019) first train
a deep network classifier on the fixed pre-trained
embedding and then fine-tune it. Our focus is to
propose alternatives to FT with similar simplicity
and computational efficiency, and study conditions
where it has significant advantages. While the idea
of concatenating multiple embeddings has been
previously used (Peters et al., 2018), we use it for
transfer learning in a low resource target domain.

2 Methodology

We are given a set of labeled training sentences
S={(si, yi)}mi=1 from a target domain and a pre-
trained sentence embedding model f1. Denote the
embedding of s from f1 by v1s=f1(s)∈Rd1 . Here
f1 is assumed to be a large and powerful embed-
ding model such as BERT. Our goal is to transfer
f1 effectively to the target domain using S . We pro-
pose to use a second sentence embedding model f2,
which is different from and typically much smaller
than f1, which has been trained solely on S. The

small size of f2 is necessary for efficient learning
on the small target dataset. Let v2s=f2(s)∈Rd2

denote the embedding for s obtained from f2.
Our method CAT concatenates v1s and v2s to get

an adaptive representation v̄s=[v>1s, αv
>
2s]
> for s.

Here α>0 is a hyper-parameter to modify emphasis
on v1s and v2s. It then trains a linear classifier c(v̄s)
using S in the following two ways:
(a) Frozen Embedding Models � Only training
the classifier c while fixing the weights of embed-
ding models f1 and f2. This approach is computa-
tionally cheaper than FT f1 since only c is trained.
We denote this by CAT � (Locked f1, f2 weights).
(b) Trainable Embedding Models Ë Jointly
training classifier c, and embedding models f1, f2
in an end-to-end fashion. We refer to this as CATË .

The inspiration for combining embeddings from
two different models f1, f2 stems from the im-
pressive empirical gains of ensembling (Dietterich,
2000) in machine learning. While typical ensem-
bling techniques like bagging and boosting aggre-
gate predictions from individual models, CAT � and
CAT Ë aggregate the embeddings from individual
models and train a classifier using S to get the pre-
dictions. Note that CAT � keeps the model weights
of f1, f2 frozen, while CATË initializes the weights
of f2 after initially training on S 2.

One of the benefits of CAT � and CATË is that they
treat f1 as a black box and do not access its inter-
nal architecture like other variants of FT (Houlsby
et al., 2019). Additionally, we can theoretically
guarantee that the concatenated embedding will
generalize well to the target domain under assump-
tions on the loss function and embedding models.

2.1 Theoretical Analysis

Assume there exists a “ground-truth” embedding
vector v∗s for each sentence s with label ys, and
a “ground-truth” linear classifier f∗(s)=〈w∗, v∗s〉
with a small loss L(f∗)=Es[`(f

∗(s), ys)] w.r.t.
some loss function ` (such as cross-entropy), where
Es denotes the expectation over the true data dis-
tribution. The superior performance of CAT Ë in
practice (see Section 3) suggests that there exists a
linear relationship between the embeddings v1s, v2s
and v∗s . Thus we assume a theoretical model:
v1s = P1v

∗
s + ε1 ; v2s = P2v

∗
s + ε2 where εi’s are

noises independent of v∗s with variances σ2i ’s. If
we denote P>=[P>1 , P

>
2 ] and ε>=[ε>1 , ε

>
2 ], then

2We empirically observe that CATË by randomly initializ-
ing weights of f2 performs similar to fine-tuning only f1
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the concatenation v̄s=[v>1s, v
>
2s]
> is v̄s=Pv∗s + ε.

Let σ=
√
σ21 + σ22 . We present the following the-

orem which guarantees the existence of a “good”
classifier f̄ over v̄s:

Theorem 1. If the loss function L is λ-Lipschitz
for the first parameter, and P has full column rank,
then there exists a linear classifier f̄ over v̄s such
that L(f̄) ≤ L(f∗) +λσ‖(P †)>w∗‖2 where P † is
the pseudo-inverse of P .

Proof. Let f̄ have weight w̄ = (P †)>w∗. Then

〈w̄, v̄s〉 = 〈(P †)>w∗, Pv∗s + ε〉
= 〈(P †)>w∗, Pv∗s〉+ 〈(P †)>w∗, ε〉
= 〈w∗, P †Pv∗s〉+ 〈(P †)>w∗, ε〉
= 〈w∗, v∗s〉+ 〈(P †)>w∗, ε〉. (1)

Then the difference in the losses is given by
L(f̄)− L(f∗) = Es[`(f̄(s), ys)− `(f∗(s), ys)]

≤ λEs|f̄(s)− f∗(s)| (2)

= λEs|〈(P †)>w∗, ε〉|.

≤ λ
√

Es〈(P †)>w∗, ε〉2 (3)

≤ λ
√
Es‖(P †)>w∗‖22‖ε‖22 (4)

= λσ‖(P †)>w∗‖2

where we use the Lipschitz-ness of L in Equation 2,
Jensen’s inequality in Equation 3, and Cauchy-
Schwarz inequality in Equation 4.

More intuitively, if the SVD of P=UΣV >, then
‖(P †)>w∗‖2=‖(Σ†)>V >w∗‖2. So if the top right
singular vectors in V align well with w∗, then
‖(P †)>w∗‖2 will be small in magnitude. This
means that if P1 and P2 together cover the direc-
tion w∗, they can capture information important for
classification. And thus there exists a good classi-
fier f̄ on v̄s. Additional explanation is presented in
Appendix A.1.

2.2 Do Other Combination Methods Work?
There are several sophisticated techniques to com-
bine v1s and v2s other than concatenation. Since
v1s and v2s may be in different dimensions, a di-
mension reduction technique which projects them
on the same dimensional space might work bet-
ter at capturing the general and domain specific
information. We consider two popular techniques:

CCA Canonical Correlation Analysis (Hotelling,
1936) learns linear projections Φ1 and Φ2 into di-
mension d to maximize the correlations between

the projections {Φ1v1si} and {Φ2v2si}. We use
v̄>s = 1

2Φ1v1si + 1
2Φ2v2si with d = min{d1, d2}.

KCCA Kernel Canonical Correlation Analy-
sis (Schölkopf et al., 1998) first applies non-
linear projections g1 and g2 and then CCA on
{g1(v1si)}mi=1 and {g2(v2si)}mi=1. We use d =
min{d1, d2} and v̄>s = 1

2g1(v1si) + 1
2g2(v2si).

We empirically evaluate CCA � and KCCA � and
our results (see Section 3) show that the former two
perform worse than CAT � . Further, CCA � performs
even worse than the individual embedding models.
This is a very interesting negative observation, and
below we provide an explanation for this.

We argue that even when v1s and v2s contain
information important for classification, CCA of
the two embeddings can eliminate this and just
retain the noise in the embeddings, thereby lead-
ing to inferior prediction performance. Theorem 2
constructs such an example.

Theorem 2. Let v̄s denote the embedding for sen-
tence s obtained by concatenation, and ṽs denote
that obtained by CCA. There exists a setting of the
data and w∗, P, ε such that there exists a linear
classifier f̄ on v̄s with the same loss as f∗, while
CCA achieves the maximum correlation but any
classifier on ṽs is at best random guessing.

Proof. Suppose we perform CCA to get d dimen-
sional ṽs. Suppose v∗s has d+ 2 dimensions, each
dimension being an independent Gaussian. Sup-
pose w∗=[1, 1, 0, . . . , 0]>, and the label for the
sentence s is ys=1 if 〈w∗, v∗s〉≥0 and ys=0 other-
wise. Suppose ε=0, P1=diag(1, 0, 1, . . . , 1), and
P2=diag(0, 1, 1, . . . , 1).

Let the linear classifier f̄ have weights
[1, 0,0, 0, 1,0]> where 0 is the zero vector
of d dimensions. Clearly, f̄(s)=f∗(s) for any s,
so it has the same loss as f∗.

For CCA, since the coordinates of v∗s are indepen-
dent Gaussians, v1s and v2s only have correlation
in the last d dimensions. Solving the CCA op-
timization, the projection matrices for both em-
beddings are the same φ = diag(0, 0, 1, . . . , 1)
which achieves the maximum correlation. Then the
CCA embedding is ṽs = [0, 0, (v∗s)3:(d+2)] where
(v∗s)3:(d+2) are the last d dimensions of v∗s , which
contains no information about the label. Therefore,
any classifier on ṽs is at best random guessing.

The intuition for this is that v1s and v2s share com-
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mon information while each has some special in-
formation for the classification. If the two sets of
special information are uncorrelated, then they will
be eliminated by CCA. Now, if the common in-
formation is irrelevant to the labels, then the best
any classifier can do with the CCA embeddings is
just random guessing. This is a fundamental draw-
back of the unsupervised CCA technique, clearly
demonstrated by the extreme example in the the-
orem. In practice, the common information can
contain some relevant information, so CCA embed-
dings are worse than concatenation but better than
random guessing. KCCA can be viewed as CCA
on a nonlinear transformation of v1s and v2s where
the special information gets mixed non-linearly and
cannot be separated out and eliminated by CCA.
This explains why the poor performance of CCA �

is not observed for KCCA � in Table 2. We present
additional empirical verification of Theorem 2 in
Appendix A.2.

3 Experiments

Datasets We evaluate our approach on seven low
resource datasets from NLP text classification tasks
like sentiment classification, question type clas-
sification, opinion polarity detection, subjectivity
classification, etc. We group these datasets into 2
categories: the first having a few hundred training
samples (which we term as very small datasets for
the remainder of the paper), and the second having
a few thousand training samples (which we term
as small datasets). We consider the following 3
very small datasets: Amazon (product reviews),
IMDB (movie reviews) and Yelp (food article re-
views); and the following 4 small datasets: MR
(movie reviews), MPQA (opinion polarity), TREC
(question-type classification) and SUBJ (subjec-
tivity classification). We present the statistics of
the datasets in Table 1 and provide the details and
downloadable links in Appendix B.1.

Dataset c N |V| Test

Amazon (Sarma et al., 2018) 2 1000 1865 100
IMDB (Sarma et al., 2018) 2 1000 3075 100
Yelp (Sarma et al., 2018) 2 1000 2049 100
MR (Pang and Lee, 2005) 2 10662 18765 1067

MPQA (Wiebe and Wilson, 2005) 2 10606 6246 1060
TREC (Li and Roth, 2002) 6 5952 9592 500
SUBJ (Pang and Lee, 2004) 2 10000 21323 1000

Table 1: Dataset statistics. c: Number of classes, N:
Dataset size, |V |: Vocabulary size, Test: Test set size
(if no standard test set is provided, we use a random
train / dev / test split of 80 / 10 / 10 %)

Amazon Yelp IMDB
BERT No-FT 93.1 90.2 91.6

BERT FT 94.0 91.7 92.3
Adapter 94.3 93.5 90.5

CNN-R 91.1 92.7 93.2
CCA � (CNN-R) 79.1 71.5 80.8
KCCA � (CNN-R) 91.5 91.5 94.1
CAT � (CNN-R) 93.2 96.5 96.2
CAT Ë (CNN-R) 94.0 96.2 97.0

CNN-S 94.7 95.2 96.6
CCA � (CNN-S) 83.6 67.8 83.3
KCCA � (CNN-S) 94.3 91.9 97.9
CAT � (CNN-S) 95.3 97.1 98.1
CATË (CNN-S) 95.7 97.2 98.3

CNN-NS 95.9 95.8 96.8
CCA � (CNN-NS) 81.3 69.4 85.0
KCCA � (CNN-NS) 95.8 96.2 97.2
CAT � (CNN-NS) 96.4 98.3 98.3
CATË (CNN-NS) 96.8 98.3 98.4

Table 2: Evaluation on very small datasets. CCA � (·) /
KCCA � (·) / CAT � (·) / CATË (·) refers to using a specific
CNN variant as f2. Best results for each CNN variant
in boldface.

Models for Evaluation We use the BERT (Devlin
et al., 2018) base uncased model as the pre-trained
model f1. We choose a Text-CNN (Kim, 2014)
model as the domain specific model f2 with 3 ap-
proaches to initialize the word embeddings: ran-
domly initialized (CNN-R), static GloVe (Pennington
et al., 2014) vectors (CNN-S) and trainable GloVe
vectors (CNN-NS). We use a regularized logistic re-
gression as the classifier c. We present the model
and training details along with the chosen hyper-
parameters in Appendix B.2-B.3. We also present
results with two other popular pre-trained models:
GenSen and InferSent in Appendix C.2.

We consider two baselines: (i) BERT fine-
tuning (denoted by BERT FT) and (ii) learn-
ing c over frozen pre-trained BERT weights (de-
noted by BERT No-FT). We also present the
Adapter (Houlsby et al., 2019) approach as a base-
line, which injects new adapters in BERT followed
by selectively training the adapters while freezing
the BERT weights, to compare with CAT � since
neither fine-tunes the BERT parameters.

Results on Very Small Datasets On the 3 very
small datasets, we present results averaged over 10
runs in Table 2. The key observations are summa-
rized as follows:
(i) CAT � and CATË almost always beat the accuracy
of the baselines (BERT FT, Adapter) showing their
effectiveness in transferring knowledge from the
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MR MPQA SUBJ TREC

BERT No-FT 83.26 87.44 95.96 88.06
BERT FT 86.22 90.47 96.95 96.40
Adapter 85.55 90.40 97.40 96.55
CNN-NS 80.93 88.38 89.25 92.98

CAT � (CNN-NS) 85.60 90.06 95.92 96.64
CAT Ë (CNN-NS) 87.15 91.19 97.60 97.06

Table 3: Performance of CAT � and CATË using CNN-NS

and BERT on small datasets. Best results in boldface.

general domain to the target domain.
(ii) Both the CCA � , KCCA � (computationally expen-
sive) get inferior performance than CAT � . Similar
trends for GenSen and InferSent in Appendix C.2.
(iii) CATË performs better than CAT � , but at an in-
creased computational cost. The execution time for
the latter is the time taken to train the text-CNN,
extract BERT embeddings, concatenate them, and
train a classifier on the combination. On an average
run on the Amazon dataset, CAT � requires about
125 s, reducing around 30% of the 180 s for BERT
FT. Additionally, CAT � has small memory require-
ments as it can be computed on a CPU in contrast
to BERT FT which requires, at minimum, a 12GB
memory GPU. The total time for CATË is 195 s,
which is less than a 9% increase over FT. It also
has a negligible 1.04% increase in memory (the
number of parameters increases from 109,483,778
to 110,630,332 due to the text-CNN).

Results on Small Datasets We use the best per-
forming CNN-NS model and present the results in Ta-
ble 3. Again, CATË achieves the best performance
on all the datasets improving the performance of
BERT FT and Adapter. CAT � can achieve compa-
rable test accuracy to BERT FT on all the tasks
while being much more computationally efficient.
On an average run on the MR dataset, CAT � (290
s) reduces the time of BERT FT (560 s) by about
50%, while CATË (610 s) only incurs an increase
of about 9% over BERT FT.

Comparison with Adapter CAT � can outperform
Adapter for very small datasets and perform com-
parably on small datasets having 2 advantages:
(i) We do not need to open the BERT model and
access its parameters to introduce intermediate lay-
ers and hence our method is modular applicable to
multiple pre-trained models.
(ii) On very small datasets like Amazon, CAT � in-
troduces roughly only 1% extra parameters as com-
pared to the 3−4% of Adapter thereby being more
parameter efficient. However note that this increase

Figure 1: Comparing test accuracy of CAT � and CAT Ë

on MR dataset with varying training dataset size.

in the number of parameters due to the text-CNN
is a function of the vocabulary size of the dataset
as it includes the word embeddings which are fed
as input to the text-CNN. For a dataset having a
larger vocabulary size like SUBJ 3, Adapter might
be more parameter efficient than CAT � .

Effect of Dataset Size We study the effect of size
of data on the performance of our method by vary-
ing the training data of the MR dataset via ran-
dom sub-sampling. From Figure 1, we observe
that CAT Ë gets the best results across all training
data sizes, significantly improving over BERT FT.
CAT � gets performance comparable to BERT FT
on a wide range of data sizes, from 500 points on.
We present qualitative analysis and complete re-
sults with error bounds in Appendix C.

4 Conclusion

In this paper we have proposed a simple method
for transferring a pre-trained sentence embedding
model for text classification tasks. We empirically
show that concatenating pre-trained and domain
specific sentence embeddings, learned on the target
dataset, with or without fine-tuning can improve
the classification performance of pre-trained mod-
els like BERT on small datasets. We have also
provided theoretical analysis identifying the condi-
tions when this method is successful and to explain
the experimental results.
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Appendix

A Theorems: Additional Explanation

A.1 Concatenation

Theorem 1. If the loss function L is λ-Lipschitz
for the first parameter, and P has full column rank,
then there exists a linear classifier f̄ over v̄s such
that L(f̄) ≤ L(f∗) +λσ‖(P †)>w∗‖2 where P † is
the pseudo-inverse of P .

Justification of Assumptions The assumption
of Lipschitz-ness of the loss means that the loss
changes smoothly with the prediction, which is a
standard assumption in machine learning. The as-
sumption on P having full column rank means that
v1s, v2s contain the information of v∗s and ensures
that P † exists.4

Explanation For intuition about the term
‖(P †)>w∗‖2, consider the following simple ex-
ample. Suppose v∗s has 4 dimensions, and w∗ =
[1, 1, 0, 0]>, i.e., only the first two dimensions
are useful for classification. Suppose P1 =
diag(c, 0, 1, 0) is a diagonal matrix, so that v1s
captures the first dimension with scaling factor
c > 0 and the third dimension with factor 1, and
P2 = diag(0, c, 0, 1) so that v2s captures the other
two dimensions. Hence we have (P †)>w∗ =
[1/c, 1/c, 0, 0]>, and thus

L(f̄) ≤ L(f∗) +
√

2λ
σ

c

Thus the quality of the classifier is determined by
the noise-signal ratio σ/c. If c is small, meaning
that v1s and v2s mostly contain nuisance, then the
loss is large. If c is large, meaning that v1s and v2s
mostly capture the information along with some
nuisance while the noise is relatively small, then
the loss is close to that of f∗. Note that f̄ can be
much better than any classifier using only v1s or
v2s that has only part of the features determining
the class labels.

A.2 CCA

Theorem 2. Let v̄s denote the embedding for sen-
tence s obtained by concatenation, and ṽs denote
that obtained by CCA. There exists a setting of the
data and w∗, P, ε such that there exists a linear
classifier f̄ on v̄s with the same loss as f∗, while
CCA achieves the maximum correlation but any
classifier on ṽs is at best random guessing.

Empirical Verification One important insight
from Theorem 2 is that when the two sets of
embeddings have special information that is not
shared with each other but is important for clas-
sification, then CCA will eliminate such informa-
tion and have bad prediction performance. Let
r2s = v2s − Φ>2 Φ2v2s be the residue vector for
the projection Φ2 learned by CCA for the special
domain, and similarly define r1s. Then the analysis

4One can still do analysis dropping the full-rank assump-
tion, but it will become more involved and non-intuitive
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suggests that the residues r1s and r2s contain infor-
mation important for prediction. We conduct exper-
iments for BERT+CNN-non-static on Amazon re-
views, and find that a classifier on the concatenation
of r1s and r2s has accuracy 96.4%. This is much
better than 81.3% on the combined embeddings via
CCA. These observations provide positive support
for our analysis.

B Experiment Details

B.1 Datasets

In addition to Table 1, here we provide details on
the tasks of the datasets and links to download them
for reproducibility of results.

• Amazon: A sentiment classification dataset on
Amazon product reviews where reviews are
classified as ‘Positive’ or ‘Negative’. 5.

• IMDB: A sentiment classification dataset of
movie reviews on IMDB where reviews are
classified as ‘Positive’ or ‘Negative’ 3.

• Yelp: A sentiment classification dataset of
restaurant reviews from Yelp where reviews
are classified as ‘Positive’ or ‘Negative’ 3.

• MR: A sentiment classification dataset of
movie reviews based on sentiment polarity
and subjective rating (Pang and Lee, 2005)6.

• MPQA: An unbalanced polarity classification
dataset ( 70% negative examples) for opinion
polarity detection (Wiebe and Wilson, 2005)7.

• TREC: A question type classification dataset
with 6 classes for questions about a person,
location, numeric information, etc. (Li and
Roth, 2002)8.

• SUBJ: A dataset for classifying a sentence as
having subjective or objective opinions (Pang
and Lee, 2004).

The Amazon, Yelp and IMDB review datasets have
previously been used for research on few-sample
learning by Sarma et al. (2018) and capture senti-
ment information from target domains very differ-
ent from the general text corpora of the pre-trained
models.

5https://archive.ics.uci.edu/ml/
datasets/Sentiment+Labelled+Sentences

6https://www.cs.cornell.edu/people/
pabo/movie-review-data/

7http://mpqa.cs.pitt.edu/
8http://cogcomp.org/Data/QA/QC/

B.2 Embedding Models

B.2.1 Domain Specific f2
We use the text-CNN model (Kim, 2014) for do-
main specific embeddings f2 the details of which
are provided below.
Text-CNN The model restricts the maximum se-
quence length of the input sentence to 128 tokens,
and uses convolutional filter windows of sizes 3,
4, 5 with 100 feature maps for each size. A max-
overtime pooling operation (Collobert et al., 2011)
is used over the feature maps to get a 384 dimen-
sional sentence embeddings (128 dimensions corre-
sponding to each filter size). We train the model us-
ing the Cross Entropy loss with an `2 norm penalty
on the classifier weights similar to Kim (2014).
We use a dropout rate of 0.5 while training. For
each dataset, we create a vocabulary specific to
the dataset which includes any token present in the
train/dev/test split. The input word embeddings
can be chosen in the following three ways:

• CNN-R : Randomly initialized 300-dimensional
word embeddings trained together with the
text-CNN.

• CNN-S : Initialised with GloVe (Pennington
et al., 2014) pre-trained word embeddings and
made static during training the text-CNN.

• CNN-NS : Initialised with GloVe (Pennington
et al., 2014) pre-trained word embeddings and
made trainable during training the text-CNN.

For very small datasets we additionally compare
with sentence embeddings obtained using the Bag
of Words approach.

B.2.2 Pre-Trained f1
We use the following three models for pre-trained
embeddings f1:
BERT We use the BERT9-base uncased model
with WordPiece tokenizer having 12 transformer
layers. We obtain 768 dimensional sentence embed-
dings corresponding to the [CLS] token from the
final layer. We perform fine-tuning for 20 epochs
with early stopping by choosing the best perform-
ing model on the validation data. The additional
fine-tuning epochs (20 compared to the typical 3)
allows for a better performance of the fine-tuning
baseline since we use early stopping.

9https://github.com/google-research/bert
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https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://mpqa.cs.pitt.edu/
http://cogcomp.org/Data/QA/QC/


468

InferSent We use the pre-trained InferSent
model (Conneau et al., 2017) to obtain 4096 di-
mensional sentence embeddings using the imple-
mentation provided in the SentEval10 repository.
We use InferSent v1 for all our experiments.
GenSen We use the pre-trained GenSen
model (Subramanian et al., 2018) implemented in
the SentEval repository to obtain 4096 dimensional
sentence embeddings.

B.3 Training Details
We train domain specific embeddings on the train-
ing data and extract the embeddings. We combine
these with the embeddings from the pre-trained
models and train a regularized logistic regression
classifier on top. This classifier is learned on the
training data, while using the dev data for hyper-
parameter tuning the regularizer penalty on the
weights. The classifier can be trained either by
freezing the weights of the embedding models or
training the whole network end-to-end. The per-
formance is tested on the test set. We use test
accuracy as the performance metric and report all
results averaged over 10 experiments unless men-
tioned otherwise. The experiments are performed
on an NVIDIA Titan Xp 12 GB GPU.

B.3.1 Hyperparameters
We use an Adam optimizer with a learning rate
of 2e−5 as per the standard fine-tuning practice.
For CCA � , we used a regularized CCA implementa-
tion and tune the regularization parameter via grid
search in [0.00001, 10] in multiplicative steps of
10 over the validation data. For KCCA � , we use
a Gaussian kernel with a regularized KCCA im-
plementation where the Gaussian sigma and the
regularization parameter are tuned via grid search
in [0.05, 10] and [0.00001, 10] respectively in mul-
tiplicative steps of 10 over the validation data. For
CAT � and CAT Ë , the weighting parameter α is tuned
via grid search in the range [0.002, 500] in multi-
plicative steps of 10 over the validation data.

C Additional Results

C.1 Qualitative Analysis
We present some qualitative examples from the
Amazon, IMDB and Yelp datasets on which BERT
and CNN-NS are unable to provide the correct class
predictions, while CAT � or KCCA � can successfully
provide the correct class predictions in Table 4.

10https://github.com/facebookresearch/SentEval

Correctly classified by KCCA �

However-the ringtones are not the best, and neither are the
games.
This is cool because most cases are just open there allowi-
ng the screen to get all scratched up.
Correctly classified by CAT �

TNot nearly as good looking as the amazon picture makes
it look .
Magical Help .

(a) Amazon

Correctly classified by KCCA �

I would have casted her in that role after ready the script .
Predictable , but not a bad watch .
Correctly classified by CAT �

I would have casted her in that role after ready the script .
Predictable , but not a bad watch .

(b) IMDB

Correctly classified by KCCA �

The lighting is just dark enough to set the mood .
I went to Bachi Burger on a friend’s recommend-
ation and was not disappointed .
dont go here .
I found this place by accident and I could not be happier .
Correctly classified by CAT �

The lighting is just dark enough to set the mood .
I went to Bachi Burger on a friend’s recommend-
ation and was not disappointed .
dont go here .
I found this place by accident and I could not be happier .

(c) Yelp

Table 4: Sentences from Amazon, IMDB, Yelp datasets
where KCCA � and CAT � of BERT and CNN-NS embed-
dings succeeds while they individually give wrong pre-
dictions.

We observe that these are either short sentences
or ones where the content is tied to the specific
reviewing context as well as the involved structure
to be parsed with general knowledge. Such input
sentences thus require combining both the general
semantics of BERT and the domain specific seman-
tics of CNN-NS to predict the correct class labels.

C.2 Complete Results with Error Bounds
We present a comprehensive set of results along
with error bounds on very small datasets (Amazon,
IMDB and Yelp reviews) in Table 2, where we
evaluate three popularly used pre-trained sentence
embedding models, namely BERT, GenSen and In-
ferSent. We present the error bounds on the results
for small datasets in Table 3. For small datasets,
we additionally present results from using CCA �

(We omit KCCA � here due to high computational
memory requirements).
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BOW CNN-R CNN-S CNN-NS

Amazon

Default 79.20 ± 2.31 91.10 ± 1.64 94.70 ± 0.64 95.90 ± 0.70

BERT 94.00 ± 0.02
CATË - 94.05 ± 0.23 95.70 ± 0.50 96.75 ± 0.76
CAT � 89.59 ± 1.22 93.20 ± 0.98 95.30 ± 0.46 96.40 ± 1.11

KCCA � 89.12 ± 0.47 91.50 ± 1.63 94.30 ± 0.46 95.80 ± 0.40
CCA � 50.91 ± 1.12 79.10 ± 2.51 83.60 ± 1.69 81.30 ± 3.16

GenSen 82.55 ± 0.82
CAT � 82.82 ± 0.97 92.80 ± 1.25 94.10 ± 0.70 95.00 ± 1.0

KCCA � 79.21 ± 2.28 91.30 ± 1.42 94.80 ± 0.75 95.90 ± 0.30
CCA � 52.80 ± 0.74 80.60 ± 4.87 83.00 ± 2.45 84.95 ± 1.45

InferSent 85.29 ± 1.61
CAT � 51.89 ± 0.62 90.30 ± 1.48 94.70 ± 1.10 95.90 ± 0.70

KCCA � 52.29 ± 0.74 91.70 ± 1.49 95.00 ± 0.00 96.00 ± 0.00
CCA � 53.10 ± 0.82 61.10 ± 3.47 65.50 ± 3.69 71.40 ± 3.04

Yelp

Default 81.3± 2.72 92.71± 0.46 95.25 ± 0.39 95.83 ± 0.14

BERT 91.67 ± 0.00
CATË - 96.23 ± 1.04 97.23 ± 0.70 98.34 ± 0.62
CAT � 89.03 ± 0.70 96.50 ± 1.33 97.10 ± 0.70 98.30 ± 0.78

KCCA � 88.51 ± 1.22 91.54 ± 4.63 91.91 ±1.13 96.2 ± 0.87
CCA � 50.27 ± 1.33 71.53 ± 2.46 67.83 ± 3.07 69.4 ± 3.35

GenSen 86.75 ± 0.79
CAT � 85.94 ± 1.04 94.24 ± 0.53 95.77 ± 0.36 96.03 ± 0.23

KCCA � 83.35 ± 1.79 92.58 ± 0.31 95.41 ± 0.45 95.06 ± 0.56
CCA � 57.14 ± 0.84 84.27 ± 1.68 86.94 ± 1.62 87.27± 1.81

InferSent 85.7 ± 1.12
CAT � 50.83 ± 0.42 91.94 ± 0.46 96.10 ± 1.30 97.00 ± 0.77

KCCA � 50.80 ± 0.65 91.13 ± 1.63 95.45 ± 0.23 95.57 ± 0.55
CCA � 55.91 ± 1.23 60.80 ± 2.22 54.70 ± 1.34 59.50 ± 1.85

IMDB

Default 89.30± 1.00 93.25 ± 0.38 96.62 ± 0.46 96.76 ± 0.26

BERT 92.33 ± 0.00
CATË - 97.07 ± 0.95 98.31 ± 0.83 98.42 ± 0.78
CAT � 89.27 ± 0.97 96.20 ± 2.18 98.10 ± 0.94 98.30 ± 1.35

KCCA � 88.29 ± 0.65 94.10 ± 1.87 97.90 ± 0.30 97.20 ± 0.40
CCA � 51.03 ± 1.20 80.80 ± 2.75 83.30 ± 4.47 84.97 ± 1.44

GenSen 86.41 ± 0.66
CAT � 86.86 ± 0.62 95.63 ± 0.47 97.22 ± 0.27 97.42 ± 0.31

KCCA � 84.72 ± 0.93 93.23 ± 0.38 96.19 ± 0.21 96.60 ± 0.37
CCA � 51.48 ± 1.02 86.28 ± 1.76 87.30 ± 2.12 87.47 ± 2.17

InferSent 84.3 ± 0.63
CAT � 50.36 ± 0.62 92.30 ± 1.26 97.90 ± 1.37 97.10 ± 1.22

KCCA � 50.09 ± 0.68 92.40 ± 1.11 97.62 ±0.48 98.20 ± 1.40
CCA � 52.56 ± 1.15 54.50 ± 4.92 54.20 ± 5.15 61.00 ± 4.64

Table 5: Test accuracy ( ± std dev) for Amazon, Yelp and IMDB review datasets. Default values are performance
of the domain specific models. Default values for BERT, Gensen and InferSent correspond to fine-tuning them.
Best results for each pre-trained model are highlighted in boldface.

MR MPQA SUBJ TREC

BERT No-FT 83.26 ± 0.67 87.44 ± 1.37 95.96 ± 0.27 88.06 ± 1.90
BERT FT 86.22 ± 0.85 90.47 ± 1.04 96.95 ± 0.14 96.40 ± 0.67

CNN-NS 80.93 ± 0.16 88.38 ± 0.28 89.25 ± 0.08 92.98 ± 0.89
CCA � (CNN-NS) 85.41 ± 1.18 77.22 ± 1.82 94.55 ± 0.44 84.28 ± 2.96
CAT � (CNN-NS) 85.60 ± 0.95 90.06 ± 0.48 95.92± 0.26 96.64 ± 1.07
CAT Ë (CNN-NS) 87.15 ± 0.70 91.19 ± 0.84 97.60 ± 0.23 97.06 ± 0.48

Table 6: Test accuracy (± std dev) for MR, MPQA, SUBJ and TREC datasets. Best results on the datasets are
highlighted in boldface. The domain specific embedding model used is CNN-non-static, and the pre-trained model
used is BERT.


