@inproceedings{lebanoff-etal-2020-cascade,
title = "A Cascade Approach to Neural Abstractive Summarization with Content Selection and Fusion",
author = "Lebanoff, Logan and
Dernoncourt, Franck and
Kim, Doo Soon and
Chang, Walter and
Liu, Fei",
editor = "Wong, Kam-Fai and
Knight, Kevin and
Wu, Hua",
booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.aacl-main.52",
doi = "10.18653/v1/2020.aacl-main.52",
pages = "529--535",
abstract = "We present an empirical study in favor of a cascade architecture to neural text summarization. Summarization practices vary widely but few other than news summarization can provide a sufficient amount of training data enough to meet the requirement of end-to-end neural abstractive systems which perform content selection and surface realization jointly to generate abstracts. Such systems also pose a challenge to summarization evaluation, as they force content selection to be evaluated along with text generation, yet evaluation of the latter remains an unsolved problem. In this paper, we present empirical results showing that the performance of a cascaded pipeline that separately identifies important content pieces and stitches them together into a coherent text is comparable to or outranks that of end-to-end systems, whereas a pipeline architecture allows for flexible content selection. We finally discuss how we can take advantage of a cascaded pipeline in neural text summarization and shed light on important directions for future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lebanoff-etal-2020-cascade">
<titleInfo>
<title>A Cascade Approach to Neural Abstractive Summarization with Content Selection and Fusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Logan</namePart>
<namePart type="family">Lebanoff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Doo</namePart>
<namePart type="given">Soon</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walter</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kam-Fai</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Knight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an empirical study in favor of a cascade architecture to neural text summarization. Summarization practices vary widely but few other than news summarization can provide a sufficient amount of training data enough to meet the requirement of end-to-end neural abstractive systems which perform content selection and surface realization jointly to generate abstracts. Such systems also pose a challenge to summarization evaluation, as they force content selection to be evaluated along with text generation, yet evaluation of the latter remains an unsolved problem. In this paper, we present empirical results showing that the performance of a cascaded pipeline that separately identifies important content pieces and stitches them together into a coherent text is comparable to or outranks that of end-to-end systems, whereas a pipeline architecture allows for flexible content selection. We finally discuss how we can take advantage of a cascaded pipeline in neural text summarization and shed light on important directions for future research.</abstract>
<identifier type="citekey">lebanoff-etal-2020-cascade</identifier>
<identifier type="doi">10.18653/v1/2020.aacl-main.52</identifier>
<location>
<url>https://aclanthology.org/2020.aacl-main.52</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>529</start>
<end>535</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Cascade Approach to Neural Abstractive Summarization with Content Selection and Fusion
%A Lebanoff, Logan
%A Dernoncourt, Franck
%A Kim, Doo Soon
%A Chang, Walter
%A Liu, Fei
%Y Wong, Kam-Fai
%Y Knight, Kevin
%Y Wu, Hua
%S Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing
%D 2020
%8 December
%I Association for Computational Linguistics
%C Suzhou, China
%F lebanoff-etal-2020-cascade
%X We present an empirical study in favor of a cascade architecture to neural text summarization. Summarization practices vary widely but few other than news summarization can provide a sufficient amount of training data enough to meet the requirement of end-to-end neural abstractive systems which perform content selection and surface realization jointly to generate abstracts. Such systems also pose a challenge to summarization evaluation, as they force content selection to be evaluated along with text generation, yet evaluation of the latter remains an unsolved problem. In this paper, we present empirical results showing that the performance of a cascaded pipeline that separately identifies important content pieces and stitches them together into a coherent text is comparable to or outranks that of end-to-end systems, whereas a pipeline architecture allows for flexible content selection. We finally discuss how we can take advantage of a cascaded pipeline in neural text summarization and shed light on important directions for future research.
%R 10.18653/v1/2020.aacl-main.52
%U https://aclanthology.org/2020.aacl-main.52
%U https://doi.org/10.18653/v1/2020.aacl-main.52
%P 529-535
Markdown (Informal)
[A Cascade Approach to Neural Abstractive Summarization with Content Selection and Fusion](https://aclanthology.org/2020.aacl-main.52) (Lebanoff et al., AACL 2020)
ACL