@inproceedings{jiang-etal-2020-recipe,
title = "Recipe Instruction Semantics Corpus ({RIS}e{C}): {R}esolving Semantic Structure and Zero Anaphora in Recipes",
author = "Jiang, Yiwei and
Zaporojets, Klim and
Deleu, Johannes and
Demeester, Thomas and
Develder, Chris",
editor = "Wong, Kam-Fai and
Knight, Kevin and
Wu, Hua",
booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.aacl-main.82",
doi = "10.18653/v1/2020.aacl-main.82",
pages = "821--826",
abstract = "We propose a newly annotated dataset for information extraction on recipes. Unlike previous approaches to machine comprehension of procedural texts, we avoid a priori pre-defining domain-specific predicates to recognize (e.g., the primitive instructionsin MILK) and focus on basic understanding of the expressed semantics rather than directly reduce them to a simplified state representation (e.g., ProPara). We thus frame the semantic comprehension of procedural text such as recipes, as fairly generic NLP subtasks, covering (i) entity recognition (ingredients, tools and actions), (ii) relation extraction (what ingredients and tools are involved in the actions), and (iii) zero anaphora resolution (link actions to implicit arguments, e.g., results from previous recipe steps). Further, our Recipe Instruction Semantic Corpus (RISeC) dataset includes textual descriptions for the zero anaphora, to facilitate language generation thereof. Besides the dataset itself, we contribute a pipeline neural architecture that addresses entity and relation extractionas well an identification of zero anaphora. These basic building blocks can facilitate more advanced downstream applications (e.g., question answering, conversational agents).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jiang-etal-2020-recipe">
<titleInfo>
<title>Recipe Instruction Semantics Corpus (RISeC): Resolving Semantic Structure and Zero Anaphora in Recipes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yiwei</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Klim</namePart>
<namePart type="family">Zaporojets</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Deleu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Demeester</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Develder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kam-Fai</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Knight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a newly annotated dataset for information extraction on recipes. Unlike previous approaches to machine comprehension of procedural texts, we avoid a priori pre-defining domain-specific predicates to recognize (e.g., the primitive instructionsin MILK) and focus on basic understanding of the expressed semantics rather than directly reduce them to a simplified state representation (e.g., ProPara). We thus frame the semantic comprehension of procedural text such as recipes, as fairly generic NLP subtasks, covering (i) entity recognition (ingredients, tools and actions), (ii) relation extraction (what ingredients and tools are involved in the actions), and (iii) zero anaphora resolution (link actions to implicit arguments, e.g., results from previous recipe steps). Further, our Recipe Instruction Semantic Corpus (RISeC) dataset includes textual descriptions for the zero anaphora, to facilitate language generation thereof. Besides the dataset itself, we contribute a pipeline neural architecture that addresses entity and relation extractionas well an identification of zero anaphora. These basic building blocks can facilitate more advanced downstream applications (e.g., question answering, conversational agents).</abstract>
<identifier type="citekey">jiang-etal-2020-recipe</identifier>
<identifier type="doi">10.18653/v1/2020.aacl-main.82</identifier>
<location>
<url>https://aclanthology.org/2020.aacl-main.82</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>821</start>
<end>826</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recipe Instruction Semantics Corpus (RISeC): Resolving Semantic Structure and Zero Anaphora in Recipes
%A Jiang, Yiwei
%A Zaporojets, Klim
%A Deleu, Johannes
%A Demeester, Thomas
%A Develder, Chris
%Y Wong, Kam-Fai
%Y Knight, Kevin
%Y Wu, Hua
%S Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing
%D 2020
%8 December
%I Association for Computational Linguistics
%C Suzhou, China
%F jiang-etal-2020-recipe
%X We propose a newly annotated dataset for information extraction on recipes. Unlike previous approaches to machine comprehension of procedural texts, we avoid a priori pre-defining domain-specific predicates to recognize (e.g., the primitive instructionsin MILK) and focus on basic understanding of the expressed semantics rather than directly reduce them to a simplified state representation (e.g., ProPara). We thus frame the semantic comprehension of procedural text such as recipes, as fairly generic NLP subtasks, covering (i) entity recognition (ingredients, tools and actions), (ii) relation extraction (what ingredients and tools are involved in the actions), and (iii) zero anaphora resolution (link actions to implicit arguments, e.g., results from previous recipe steps). Further, our Recipe Instruction Semantic Corpus (RISeC) dataset includes textual descriptions for the zero anaphora, to facilitate language generation thereof. Besides the dataset itself, we contribute a pipeline neural architecture that addresses entity and relation extractionas well an identification of zero anaphora. These basic building blocks can facilitate more advanced downstream applications (e.g., question answering, conversational agents).
%R 10.18653/v1/2020.aacl-main.82
%U https://aclanthology.org/2020.aacl-main.82
%U https://doi.org/10.18653/v1/2020.aacl-main.82
%P 821-826
Markdown (Informal)
[Recipe Instruction Semantics Corpus (RISeC): Resolving Semantic Structure and Zero Anaphora in Recipes](https://aclanthology.org/2020.aacl-main.82) (Jiang et al., AACL 2020)
ACL