@inproceedings{gao-etal-2020-mixingboard,
title = "{M}ixing{B}oard: a Knowledgeable Stylized Integrated Text Generation Platform",
author = "Gao, Xiang and
Galley, Michel and
Dolan, Bill",
editor = "Celikyilmaz, Asli and
Wen, Tsung-Hsien",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-demos.26",
doi = "10.18653/v1/2020.acl-demos.26",
pages = "224--231",
abstract = "We present MixingBoard, a platform for quickly building demos with a focus on knowledge grounded stylized text generation. We unify existing text generation algorithms in a shared codebase and further adapt earlier algorithms for constrained generation. To borrow advantages from different models, we implement strategies for cross-model integration, from the token probability level to the latent space level. An interface to external knowledge is provided via a module that retrieves, on-the-fly, relevant knowledge from passages on the web or a document collection. A user interface for local development, remote webpage access, and a RESTful API are provided to make it simple for users to build their own demos.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gao-etal-2020-mixingboard">
<titleInfo>
<title>MixingBoard: a Knowledgeable Stylized Integrated Text Generation Platform</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michel</namePart>
<namePart type="family">Galley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bill</namePart>
<namePart type="family">Dolan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Asli</namePart>
<namePart type="family">Celikyilmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsung-Hsien</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present MixingBoard, a platform for quickly building demos with a focus on knowledge grounded stylized text generation. We unify existing text generation algorithms in a shared codebase and further adapt earlier algorithms for constrained generation. To borrow advantages from different models, we implement strategies for cross-model integration, from the token probability level to the latent space level. An interface to external knowledge is provided via a module that retrieves, on-the-fly, relevant knowledge from passages on the web or a document collection. A user interface for local development, remote webpage access, and a RESTful API are provided to make it simple for users to build their own demos.</abstract>
<identifier type="citekey">gao-etal-2020-mixingboard</identifier>
<identifier type="doi">10.18653/v1/2020.acl-demos.26</identifier>
<location>
<url>https://aclanthology.org/2020.acl-demos.26</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>224</start>
<end>231</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MixingBoard: a Knowledgeable Stylized Integrated Text Generation Platform
%A Gao, Xiang
%A Galley, Michel
%A Dolan, Bill
%Y Celikyilmaz, Asli
%Y Wen, Tsung-Hsien
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F gao-etal-2020-mixingboard
%X We present MixingBoard, a platform for quickly building demos with a focus on knowledge grounded stylized text generation. We unify existing text generation algorithms in a shared codebase and further adapt earlier algorithms for constrained generation. To borrow advantages from different models, we implement strategies for cross-model integration, from the token probability level to the latent space level. An interface to external knowledge is provided via a module that retrieves, on-the-fly, relevant knowledge from passages on the web or a document collection. A user interface for local development, remote webpage access, and a RESTful API are provided to make it simple for users to build their own demos.
%R 10.18653/v1/2020.acl-demos.26
%U https://aclanthology.org/2020.acl-demos.26
%U https://doi.org/10.18653/v1/2020.acl-demos.26
%P 224-231
Markdown (Informal)
[MixingBoard: a Knowledgeable Stylized Integrated Text Generation Platform](https://aclanthology.org/2020.acl-demos.26) (Gao et al., ACL 2020)
ACL