@inproceedings{shlain-etal-2020-syntactic,
title = "Syntactic Search by Example",
author = "Shlain, Micah and
Taub-Tabib, Hillel and
Sadde, Shoval and
Goldberg, Yoav",
editor = "Celikyilmaz, Asli and
Wen, Tsung-Hsien",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-demos.3",
doi = "10.18653/v1/2020.acl-demos.3",
pages = "17--23",
abstract = "We present a system that allows a user to search a large linguistically annotated corpus using syntactic patterns over dependency graphs. In contrast to previous attempts to this effect, we introduce a light-weight query language that does not require the user to know the details of the underlying syntactic representations, and instead to query the corpus by providing an example sentence coupled with simple markup. Search is performed at an interactive speed due to efficient linguistic graph-indexing and retrieval engine. This allows for rapid exploration, development and refinement of syntax-based queries. We demonstrate the system using queries over two corpora: the English wikipedia, and a collection of English pubmed abstracts. A demo of the wikipedia system is available at \url{https://allenai.github.io/spike/} .",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shlain-etal-2020-syntactic">
<titleInfo>
<title>Syntactic Search by Example</title>
</titleInfo>
<name type="personal">
<namePart type="given">Micah</namePart>
<namePart type="family">Shlain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hillel</namePart>
<namePart type="family">Taub-Tabib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shoval</namePart>
<namePart type="family">Sadde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Asli</namePart>
<namePart type="family">Celikyilmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsung-Hsien</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a system that allows a user to search a large linguistically annotated corpus using syntactic patterns over dependency graphs. In contrast to previous attempts to this effect, we introduce a light-weight query language that does not require the user to know the details of the underlying syntactic representations, and instead to query the corpus by providing an example sentence coupled with simple markup. Search is performed at an interactive speed due to efficient linguistic graph-indexing and retrieval engine. This allows for rapid exploration, development and refinement of syntax-based queries. We demonstrate the system using queries over two corpora: the English wikipedia, and a collection of English pubmed abstracts. A demo of the wikipedia system is available at https://allenai.github.io/spike/ .</abstract>
<identifier type="citekey">shlain-etal-2020-syntactic</identifier>
<identifier type="doi">10.18653/v1/2020.acl-demos.3</identifier>
<location>
<url>https://aclanthology.org/2020.acl-demos.3</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>17</start>
<end>23</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Syntactic Search by Example
%A Shlain, Micah
%A Taub-Tabib, Hillel
%A Sadde, Shoval
%A Goldberg, Yoav
%Y Celikyilmaz, Asli
%Y Wen, Tsung-Hsien
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F shlain-etal-2020-syntactic
%X We present a system that allows a user to search a large linguistically annotated corpus using syntactic patterns over dependency graphs. In contrast to previous attempts to this effect, we introduce a light-weight query language that does not require the user to know the details of the underlying syntactic representations, and instead to query the corpus by providing an example sentence coupled with simple markup. Search is performed at an interactive speed due to efficient linguistic graph-indexing and retrieval engine. This allows for rapid exploration, development and refinement of syntax-based queries. We demonstrate the system using queries over two corpora: the English wikipedia, and a collection of English pubmed abstracts. A demo of the wikipedia system is available at https://allenai.github.io/spike/ .
%R 10.18653/v1/2020.acl-demos.3
%U https://aclanthology.org/2020.acl-demos.3
%U https://doi.org/10.18653/v1/2020.acl-demos.3
%P 17-23
Markdown (Informal)
[Syntactic Search by Example](https://aclanthology.org/2020.acl-demos.3) (Shlain et al., ACL 2020)
ACL
- Micah Shlain, Hillel Taub-Tabib, Shoval Sadde, and Yoav Goldberg. 2020. Syntactic Search by Example. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 17–23, Online. Association for Computational Linguistics.