@inproceedings{ma-etal-2020-conversational,
title = "{C}onversational {W}ord {E}mbedding for {R}etrieval-{B}ased {D}ialog {S}ystem",
author = "Ma, Wentao and
Cui, Yiming and
Liu, Ting and
Wang, Dong and
Wang, Shijin and
Hu, Guoping",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.127",
doi = "10.18653/v1/2020.acl-main.127",
pages = "1375--1380",
abstract = "Human conversations contain many types of information, e.g., knowledge, common sense, and language habits. In this paper, we propose a conversational word embedding method named PR-Embedding, which utilizes the conversation pairs {\textless}post, reply{\textgreater} to learn word embedding. Different from previous works, PR-Embedding uses the vectors from two different semantic spaces to represent the words in post and reply. To catch the information among the pair, we first introduce the word alignment model from statistical machine translation to generate the cross-sentence window, then train the embedding on word-level and sentence-level. We evaluate the method on single-turn and multi-turn response selection tasks for retrieval-based dialog systems. The experiment results show that PR-Embedding can improve the quality of the selected response.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2020-conversational">
<titleInfo>
<title>Conversational Word Embedding for Retrieval-Based Dialog System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wentao</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiming</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shijin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guoping</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Human conversations contain many types of information, e.g., knowledge, common sense, and language habits. In this paper, we propose a conversational word embedding method named PR-Embedding, which utilizes the conversation pairs \textlesspost, reply\textgreater to learn word embedding. Different from previous works, PR-Embedding uses the vectors from two different semantic spaces to represent the words in post and reply. To catch the information among the pair, we first introduce the word alignment model from statistical machine translation to generate the cross-sentence window, then train the embedding on word-level and sentence-level. We evaluate the method on single-turn and multi-turn response selection tasks for retrieval-based dialog systems. The experiment results show that PR-Embedding can improve the quality of the selected response.</abstract>
<identifier type="citekey">ma-etal-2020-conversational</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.127</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.127</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>1375</start>
<end>1380</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conversational Word Embedding for Retrieval-Based Dialog System
%A Ma, Wentao
%A Cui, Yiming
%A Liu, Ting
%A Wang, Dong
%A Wang, Shijin
%A Hu, Guoping
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F ma-etal-2020-conversational
%X Human conversations contain many types of information, e.g., knowledge, common sense, and language habits. In this paper, we propose a conversational word embedding method named PR-Embedding, which utilizes the conversation pairs \textlesspost, reply\textgreater to learn word embedding. Different from previous works, PR-Embedding uses the vectors from two different semantic spaces to represent the words in post and reply. To catch the information among the pair, we first introduce the word alignment model from statistical machine translation to generate the cross-sentence window, then train the embedding on word-level and sentence-level. We evaluate the method on single-turn and multi-turn response selection tasks for retrieval-based dialog systems. The experiment results show that PR-Embedding can improve the quality of the selected response.
%R 10.18653/v1/2020.acl-main.127
%U https://aclanthology.org/2020.acl-main.127
%U https://doi.org/10.18653/v1/2020.acl-main.127
%P 1375-1380
Markdown (Informal)
[Conversational Word Embedding for Retrieval-Based Dialog System](https://aclanthology.org/2020.acl-main.127) (Ma et al., ACL 2020)
ACL