@inproceedings{hung-etal-2020-complete,
title = "A Complete Shift-Reduce {C}hinese Discourse Parser with Robust Dynamic Oracle",
author = "Hung, Shyh-Shiun and
Huang, Hen-Hsen and
Chen, Hsin-Hsi",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.13",
doi = "10.18653/v1/2020.acl-main.13",
pages = "133--138",
abstract = "This work proposes a standalone, complete Chinese discourse parser for practical applications. We approach Chinese discourse parsing from a variety of aspects and improve the shift-reduce parser not only by integrating the pre-trained text encoder, but also by employing novel training strategies. We revise the dynamic-oracle procedure for training the shift-reduce parser, and apply unsupervised data augmentation to enhance rhetorical relation recognition. Experimental results show that our Chinese discourse parser achieves the state-of-the-art performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hung-etal-2020-complete">
<titleInfo>
<title>A Complete Shift-Reduce Chinese Discourse Parser with Robust Dynamic Oracle</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shyh-Shiun</namePart>
<namePart type="family">Hung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hen-Hsen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work proposes a standalone, complete Chinese discourse parser for practical applications. We approach Chinese discourse parsing from a variety of aspects and improve the shift-reduce parser not only by integrating the pre-trained text encoder, but also by employing novel training strategies. We revise the dynamic-oracle procedure for training the shift-reduce parser, and apply unsupervised data augmentation to enhance rhetorical relation recognition. Experimental results show that our Chinese discourse parser achieves the state-of-the-art performance.</abstract>
<identifier type="citekey">hung-etal-2020-complete</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.13</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.13</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>133</start>
<end>138</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Complete Shift-Reduce Chinese Discourse Parser with Robust Dynamic Oracle
%A Hung, Shyh-Shiun
%A Huang, Hen-Hsen
%A Chen, Hsin-Hsi
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F hung-etal-2020-complete
%X This work proposes a standalone, complete Chinese discourse parser for practical applications. We approach Chinese discourse parsing from a variety of aspects and improve the shift-reduce parser not only by integrating the pre-trained text encoder, but also by employing novel training strategies. We revise the dynamic-oracle procedure for training the shift-reduce parser, and apply unsupervised data augmentation to enhance rhetorical relation recognition. Experimental results show that our Chinese discourse parser achieves the state-of-the-art performance.
%R 10.18653/v1/2020.acl-main.13
%U https://aclanthology.org/2020.acl-main.13
%U https://doi.org/10.18653/v1/2020.acl-main.13
%P 133-138
Markdown (Informal)
[A Complete Shift-Reduce Chinese Discourse Parser with Robust Dynamic Oracle](https://aclanthology.org/2020.acl-main.13) (Hung et al., ACL 2020)
ACL